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ABSTRACT

Unmanned systems, including unmanned aerial vehicles (UAVs), are developing technologies
that are becoming increasingly important. This thesis provides a model for generating a com-
mon operational picture (COP) for unmanned systems that is applicable in today’s technology,
and presents results and analysis based on simulation studies. This thesis specifically investi-
gates a swarm versus swarm unmanned systems scenario in which opposing teams of UAVs
approach each other. Different methodologies for generating a COP from the perspective of
a given team are investigated, and a simulation is designed to explore the performance of the
selected strategies for performing multi-target tracking. The results of the simulation show
the performance of the presented approach where targets are assumed in the field of view of the
tracking agents, false detections may or may not be present, and all entities maneuver according
to nondeterministic motion models.

v



THIS PAGE INTENTIONALLY LEFT BLANK

vi



Table of Contents

List of Acronyms and Abbreviations xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Main Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Limitations and Assumptions . . . . . . . . . . . . . . . . . . . . . 6

2 Model Formulation 9
2.1 Simulation Implementation . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Agent Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Environment Modeling . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Distributed Target Tracking from Multiple Sensors 21
3.1 General Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Detection Processing . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Track Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Track Association . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Simulation Results 61
4.1 General Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Scenario One – Baseline . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Scenario Two – Many Sensors, Many Targets . . . . . . . . . . . . . . . 68

vii



4.4 Scenario Three – Impact of False Detections . . . . . . . . . . . . . . . 75

4.5 Scenario Four – Sensitivity to False Detections . . . . . . . . . . . . . . 80

5 Conclusion and Future Work 87
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Initial Distribution List 97

viii



List of Figures

Figure 2.1 Illustrations of the motivating swarm vs. swarm scenario: (a) represents
different flight phases for defending UAVs, (b) represents a generic swarm
vs. swarm system, and (c) represents a swarm attack and swarm defense
scenario for a high valued unit. . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.2 Spherical coordinates description with Cartesian coordinates. . . . . . 12

Figure 2.3 An illustration of geometric occlusion in generating detections. The red
and blue agents (right) block portions of the field of view of the black
(left) agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.4 An example of spherical rotation. The yellow circle (positioned lower
middle) represents the original vector and red circle (positioned upper
middle) represents the rotated vector with angles θ and φ . . . . . . . . 16

Figure 3.1 General information flow of an agent. State, Detections, and NetworkDe-
tections are generated by the simulation and provided as input to the
agent. This figure depicts the model tested for any discrete time step. . 22

Figure 3.2 A sample graph for number of clusters against total distance to associated
centroids for all observation. . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.3 An example graph for polynomial fit. It should be noted that the graph
consists of log(x) and y parameters of the data in Section 3.3.1.1. . . . 33

Figure 3.4 Possibilities of line fits for seven data points (from [13]) . . . . . . . . 34

Figure 3.5 Test results for finding Best-K. ExpFit is described in Section 3.3.1.1,
LMethod is described in Section 3.3.1.3 and LogExpFit is described in
Section 3.3.1.2. RealValue shows the exact number of tracks, ‘real k’,
that originates the detections. Methods that finds closer results to ‘real
k’ are more accurate. For each scenario, 10000 Monte-Carlo runs estab-
lished. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



Figure 3.6 Test results for finding Best-K. ExpFit is described in Section 3.3.1.1,
LMethod is described in Section 3.3.1.3 and LogExpFit is described in
Section 3.3.1.2. RealValue shows the exact number of tracks, ‘real k’,
that originates the detections. Methods that finds closer results to ‘real
k’ are more accurate. For each scenario, 10000 Monte-Carlo runs estab-
lished. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.7 Test results for finding Best-K. ExpFit is described in Section 3.3.1.1,
LMethod is described in Section 3.3.1.3 and LogExpFit is described in
Section 3.3.1.2. ‘SumDistanceToCentroid’ shows the exact curve of the
data. Methods that find closer results to ‘# of Tracks’ are more accurate.
For each scenario, 10000 Monte-Carlo runs established. The location of
the index boxes that shows the ‘Best-K’ the associated method is found,
is slightly shifted for readability purposes. . . . . . . . . . . . . . . . 39

Figure 3.8 Test results for finding Best-K. ExpFit is described in Section 3.3.1.1,
LMethod is described in Section 3.3.1.3 and LogExpFit is described in
Section 3.3.1.2. ‘SumDistanceToCentroid’ shows the exact curve of the
data. Methods that find closer results to ‘# of Tracks’ are more accurate.
For each scenario, 10000 Monte-Carlo runs established. The location of
the index boxes that shows the ‘Best-K’ the associated method is found,
is slightly shifted for readability purposes. . . . . . . . . . . . . . . . 40

Figure 3.9 PDF distribution of vector x with χ = 0, Σ = σ where the probability of
a point belongs to the vector x is computed as the area under the curve.
(Figure taken from [35].) . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.1 x dimension views of Target 1 and Agent 1’s closest track in Scenario
One. (a) The x dimension plots for both Target 1 and Agent 1’s closest
track (b) The x dimension error of Agent 1’s track and Target 1 . . . . 64

Figure 4.2 y dimension views of Target 1 and Agent 1’s closest track in Scenario
One. (a) The y dimension plots for both Target 1 and Agent 1’s closest
track (b) The y dimension error of Agent 1’s track and Target 1 . . . . 65

Figure 4.3 z dimension views of Target 1 and Agent 1’s closest track in Scenario
One. (a) The z dimension plots for both Target 1 and Agent 1’s closest
track (b) The z dimension error of Agent 1’s track and Target 1 . . . . 66

x



Figure 4.4 Box plots for the tracking error for all state variables of the agents over
all tracks and associated target pairings in Scenario One. Average val-
ues show exponential convergence to steady state, with large covariances
(from newly instantiated tracks) diminishing quickly upon continuous
tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 4.5 The mean number of associated tracks at time t vs. tracks at time t− 1
for all agents in Scenario One. If tracks have no association, they are
accepted as new tracks without prior knowledge. . . . . . . . . . . . . 68

Figure 4.6 An example configuration of simulation at time t = 1 of Scenario Two.
Red markers (diamonds) are agents, blue markers (circles) are targets
and green marker (hexagram) is a track. . . . . . . . . . . . . . . . . . 69

Figure 4.7 The plot of 1 Target (red/diamond) and 1 Agent (blue/circle) throughout
Scenario Two. In each five time steps, all tracks of all Agents are plotted
(green/hexagram). The markers in this figures are time stamps of agents
and tracks. This figure exemplifies the trace of agents with tracks. . . . 70

Figure 4.8 x dimension views of Target 1 and Agent 1’s closest track in Scenario
Two. (a) The x dimension plots for both Target 1 and Agent 1’s closest
track (b) The x dimension error of Agent 1’s track and Target 1 . . . . 71

Figure 4.9 y dimension views of Target 1 and Agent 1’s closest track in Scenario
Two. (a) The y dimension plots for both Target 1 and Agent 1’s closest
track (b) The y dimension error of Agent 1’s track and Target 1 . . . . 71

Figure 4.10 z dimension views of Target 1 and Agent 1’s closest track in Scenario
Two. (a) The z dimension plots for both Target 1 and Agent 1’s closest
track (b) The z dimension error of Agent 1’s track and Target 1 . . . . 72

Figure 4.11 Box plots for the tracking error for all state variables of the agents over
all tracks and associated target pairings in Scenario Two. Throughout the
scenario, there exists an average tracking errors for each dimension that
results due to the randomization of all agents. . . . . . . . . . . . . . . 73

Figure 4.12 The mean number associated tracks at time t vs. tracks at time t−1 for all
agents in Scenario Two. If tracks have no association, they are accepted
as new tracks without prior knowledge . . . . . . . . . . . . . . . . . 74

Figure 4.13 x dimension views of Target 1 and Agent 1’s closest track in Scenario
Three. (a) The x dimension plots for both Target 1 and Agent 1’s closest
track (b) The x dimension error of Agent 1’s track and Target 1 . . . . 75

xi



Figure 4.14 y dimension views of Target 1 and Agent 1’s closest track in Scenario
Three. (a) The y dimension plots for both Target 1 and Agent 1’s closest
track (b) The y dimension error of Agent 1’s track and Target 1 . . . . 76

Figure 4.15 z dimension views of Target 1 and Agent 1’s closest track in Scenario
Three. (a) The z dimension plots for both Target 1 and Agent 1’s closest
track (b) The z dimension error of Agent 1’s track and Target 1 . . . . 76

Figure 4.16 The plot of 1 Target (red/diamond) and 1 Agent (blue/circle) throughout
Scenario Three. In each five time steps, all tracks of all Agents are plotted
(green/hexagram). The markers in this figures are time stamps of agents
and tracks. This figure exemplifies the trace of agents with tracks . . . 77

Figure 4.17 The mean number associated tracks at time t vs. tracks at time t−1 for all
agents in Scenario Three. If tracks have no association, they are accepted
as new tracks without prior knowledge . . . . . . . . . . . . . . . . . 77

Figure 4.18 This figure, in Scenario Three, depicts the mean error of all agents for
each dimension in terms of the difference of each track and its associated
target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.19 x dimension views of Target 1 and Agent 1’s closest track in Scenario
Four. (a) The x dimension plots for both Target 1 and Agent 1’s closest
track (b) The x dimension error of Agent 1’s track and Target 1 . . . . 81

Figure 4.20 y dimension views of Target 1 and Agent 1’s closest track in Scenario
Four. (a) The y dimension plots for both Target 1 and Agent 1’s closest
track (b) The y dimension error of Agent 1’s track and Target 1 . . . . 81

Figure 4.21 z dimension views of Target 1 and Agent 1’s closest track in Scenario
Four. (a) The z dimension plots for both Target 1 and Agent 1’s closest
track (b) The z dimension error of Agent 1’s track and Target 1 . . . . 82

Figure 4.22 The mean number associated tracks at time t vs. tracks at time t−1 for all
agents in Scenario Four. If tracks have no association, they are accepted
as new tracks without prior knowledge . . . . . . . . . . . . . . . . . 83

Figure 4.23 The plot of 1 Target (red/diamond) and 1 Agent (blue/circle) throughout
Scenario Four. In each five time steps, all tracks of all Agents are plotted
(green/hexagram). The markers in this figures are time stamps of agents
and tracks. This figure exemplifies the trace of agents with tracks . . . 84

Figure 4.24 This figure, in Scenario Four, depicts the mean error of all agents for
each dimension in terms of the difference of each track and its associated
target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xii



List of Tables

Table 3.1 Table of notations and definitions, including relevant vector or matrix di-
mensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Table 3.2 Table of notations and definitions, including relevant vector or matrix di-
mensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 3.3 Table of notations and definitions, including relevant vector or matrix di-
mensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 3.4 For observations ∈ R3 with total of 4 observation, k is selected starting
from 2. . . 4. In this table, k = 2. Each observation is associated with one
of the centroids. Total distance in k = 2 is ∑Distance = 6.92 . . . . . . 30

Table 3.5 The results of selecting best K algorithms. ExpFit is described in Sec-
tion 3.3.1.1, LMethod is described in Section 3.3.1.3, and LogExpFit is
described in Section 3.3.1.2. The red numbers represent the closest esti-
mate in terms of the real number of tracks. . . . . . . . . . . . . . . . 41

Table 3.6 For each scenario, the parameters of the scenario are described under
the ‘Real Parameters’ column, and the distance from the x dimension of
the ‘real index’, or ‘Best-K’, or ‘Number of Tracks’, is described under
the ‘Height of the index’ column. The real index distance is normalized
for each scenario. The methods described in Section 3.3.1.1 and Sec-
tion 3.3.1.2 are using %0.9 reduction ratio from the maximum distance
which is same as 0.1000 ‘Height of the index’ in this table. The normal-
ization is done for each scenario itself. It should be noted that normal-
ization is not done after all heights for all scenarios are computed. Each
normalization of ‘Height of the index’ is independent from any other sce-
nario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 4.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xiii



Table 4.2 The initial states of three agents and three targets in Scenario One. Note
that the motion of these agents is deterministic. . . . . . . . . . . . . . 64

Table 5.1 Summary of the average state-estimate errors for each of six state vari-
ables (positions and linear speeds) from simulation studies for four differ-
ent scenarios, described in Section 4. . . . . . . . . . . . . . . . . . . 88

Table 5.2 Summary of average number of track computation for each scenario. It
should be noted that number of targets is fixed throughout the simulation. 88

xiv



List of Acronyms and Abbreviations

ADCP Acoustic Current Doppler Profiler

ASJPDA Augmented Suboptimal Joint Probabilistic Data Association

CI Covariance Intersection

CMOMMT Cooperative Multi-robot Observation of Multiple Moving Targets

COP Common Operational Picture

FN False Negative

FOV Field of View

FP False Positive

IPPF Independent Partition Particle Filter

JPDA Joint Probabilistic Data Association

JPDAF Joint Probabilistic Data Association Filtering

KF Kalman Filtering

MAP Maximum A Posteriori

MC-JPDA Monte Carlo Joint Probabilistic Data Association Filtering

MSJPDA Multi Sensor Joint Probabilistic Data Association

MTT Multi-Target Tracking

NPS Naval Postgraduate School

PDA Probabilistic Data Association

PDF Probability Density Function

RMSE Root Mean Square Error

SLAM Simultaneous Localization and Mapping

SSPF Sequential Sampling Particle Filter

UAV Unmanned Air Vehicle

WSN Wireless Sensor Networks

xv



THIS PAGE INTENTIONALLY LEFT BLANK

xvi



Executive Summary

Unmanned systems, including unmanned aerial vehicles (UAVs), are increasingly critical devel-
oping technologies. The advantage of preventing human causalities makes unmanned systems
demanding technologies of near future. Given the development of unmanned systems world-
wide, swarm vs. swarm UAV conflicts are probable near future scenario. For swarms to succeed,
the common operational picture (COP) of each members must be accurate.

This paper proposes methods for generating a COP for each member of the swarm. There exists
different methodologies applicable to different parts of the problem. These methodologies are
evaluated according to the accuracy of the generated COP for each agent.

A simulation is generated for testing realistic scenarios and providing statistical analysis of COP
accuracy. The simulation is capable of generating swarm vs. swarm systems and generating
statistics for each UAV in the swarm. In this paper, we assume that UAVs are in the air, have
knowledge of opposing force members and can share their knowledge with swarm members via
networking.

The simulation generates detections according to the targets in the environments and uses Gaus-
sian and uniform distributions. Both occlusions of the agents and possibilities for false detec-
tions are implemented.

The simulation is flexible and allows different scenarios with different parameter sets. The
affects of false detections are investigated. There exists predetermined simulation borders and
agents bounce back from these borders. Also, agents move randomly.

The results shows the efficiency and drawbacks of different methodologies applied. The future
works section discuss possible improvements for generating more accurate COP, associating
targets in discrete time steps, and factoring network constraints into COP generation.
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CHAPTER 1:
Introduction

1.1 Motivation
Multiple target tracking, investigated since the 1950s, has a wide variety of applications, in-
cluding radar-based air traffic control, sonar-based marine life detection, vehicle tracking for
surveillance systems, and visual tracking using computer vision. Objects of interest for track-
ing can be equally diverse, and their characteristics depend on the specific application. Of
interest is a robust framework for multi-target tracking (MTT) algorithms that can be applied to
any of the scenarios described above. The main goal for MTT is to generate an accurate global
common operational picture (COP) of the evolution of the system, based on observations from
one or many noisy sources.

In particular, tracking multiple targets via distributed sensors, such as those that might be located
on a team of cooperating unmanned air vehicles (UAVs), is a promising application adaptable to
a wide variety of situations including military reconnaissance missions, public safety missions,
and exploring unknown areas. The determination of a global COP with a decentralized fusion
algorithm based on the sensor data acquired from this team of UAVs and a scalable approach
for conducting multi-target tracking are some of the main challenges.

The key research issues for MTT are determining the accuracy of sensor measurements, im-
proving estimates through filtering, and tracking associations in real time; all within constrained
computational resources. This thesis focuses on tracking the evolution of target state estimates
from multiple mobile sensors, integrating numerous components to accomplish this task. Sen-
sor measurements are assumed imperfect, that is, perturbed by noise, leading to imperfect data
associations and potentially degraded target state estimates. Due to the motion of the sensors
themselves, the geometry of their configuration is also considered, including the effects of oc-
clusion of measurements. We ignore communication constraints, such as latency and dropped
communications, as well as issues with imperfect localization of the mobile sensors.

The main focus in this paper is generating a common operational picture for each agent and
associating tracks in real time. Each agent shares their own knowledge about the environment
and generates COP both with its own measurements and with other agents measurements. Also,
each agent associates tracks individually at each time step. A single consistent global COP is
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not built as part of this thesis.

The multi-target tracking framework presented includes the following key algorithmic compo-
nents, including: (1) track generation using K-means clustering of detection measurements of
targets; (2) track association over time using probabilistic data association (PDA) approaches
with the Munkres method; (3) state improvement of tracks with Kalman filtering (KF).

1.2 Related Works
1.2.1 Motion Model
Despite the power of KF, which works recursively and produces estimation of unknown vari-
ables from noisy measurements over time, MTT is still a difficult problem, even for a centralized
systems. Tracking multiple targets in a distributed-sensor network is investigated by [1], which
provides a near-optimal solution with low overhead and low communication. In order to re-
duce the power consumption, the notion of sleep and wake periods for sensors while managing
minimum number of sensors with acceptable sensing quality is mentioned in [1].

MTT by multi-sensors has its own applications such as search/rescue tasks and observation of
items in a warehouse. The art gallery problem, the problem of observing whole museum with
the minimum number of guards, is a typical problem to which MTT applied. [2] investigates
this problem using mobile autonomous agents to observe an unknown and dynamic environ-
ment. It investigates algorithms for cooperative, multi-robot observation of multiple moving
targets (CMOMMT) and introduces the A-CMOMMT algorithm and compares it with other
algorithms to describe its constraints and advantages/disadvantages. Both real-world and de-
tailed simulation results are provided. The author concluded that A-CMOMMT is good for
hard problems where the number of targets is greater than the number of agents.

Simulation is the easiest way to test MTT algorithms. Better simulations and detailed tests pro-
vide accurate results for the efficiency, accuracy and computational workload of an algorithm
according to given criteria. It can be inferred that, for any MTT simulation, a random-walk
model is used for agents. A random-walk model is investigated by [3]. Random and indepen-
dent node motions implemented in [3] and conditions for the existence of a stationary regime,
which needs to be averted, are shown. The paper shows that node distribution converges to a
time-stationary distribution on convex and non-convex spaces.

Random movement for very large models is different from a random-walk model. This issue
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is presented in [4]. In very large models, the random-walk model cannot be achieved unless
some selection strategy is applied. [4] introduces interactive transition systems, called ‘reactive
modules’, in order to provide a random walk model for very large systems.

For accurate simulations, random path generation in very large models is another important
factor investigated by [5]. In [5], it is assumed that very large models are made up of several
concurrent components, and the paper tries to combine these component paths such that they
results in a uniform drawing of paths in a global system. A discrete-time uniform random walk
model is another method that can be used in simulations. Such a model and its properties, such
as exit probability over an edge of the simulation and the exit time (to cross across the border),
is analyzed by [6].

1.2.2 Data Fusion and Estimation
In MTT, providing nearly accurate state estimates is crucial. One of the well known solutions
is KF, which is introduced in [7]. KF is a recursive solution for discrete data linear fitting. It is
an optimal estimator under special assumptions, and can be used in a wide variety of situations.

In MTT applications with distributed systems, data fusion, the process of integrating multiple
data into a consistent and useful representation, is inevitable. Since the state estimates of targets
are acquired via sensor and with the errors of these sensors, the fused error needs to be calcu-
lated. Covariance Intersection (CI), further investigated by [8–10], is one such method. For
CI, [8] focuses on unknown correlation between the data while [9] tries to provide a solution
for simultaneous localization and mapping (SLAM). Also, [10] introduces a fast CI algorithm
for unknown correlation between data points.

Data fusion in distributed MTT heavily relies on clustering. For distributed systems where the
same target may cause multiple observations, tracks, via multiple sensors, it is important to
know which track is originated from the same target. One of the well known methods for this
purpose is K-means clustering. A key parameter in K-means clustering is the number of clusters
to use. Much research has focused [11–13] on determining the best K for specific or general
purposes.

Reference [14] describes architectures for distributed data-fusion of multiple sensors for track-
ing and estimating the state and dynamics of a target. It describes advantages of using dis-
tributed data-fusion architectures for both linear and non-linear systems with independent mea-
surement errors. Different kinds of distributed data-fusion methods are analyzed with each
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algorithm’s alignment, association and updating cycle. It also describes the communication
requirements for distributed data fusion.

1.2.3 Data Association
The correct identification of n targets with m tracks throughout time is a hard problem. Even
with perfect detection, where n = m, there exist nm different identifications. A global estimator
from local track estimations with a local estimation model is described by [15]. [16] introduces a
tree weighted approach for converting data association problem to a maximum a posteriori prob-
ability configuration (MAP) in a graphical model. Also, accomplishing data association with
local message passing for graphical models is investigated by [17]. [18] introduces joint proba-
bilistic data association filtering (JPDAF) methods for data association in SLAM and provides
test results of JPDAF. Sample based joint probabilistic data-association (JPDA) is investigated
by [19] while topic intensity JPDA is investigated by [20]. Also, [21] introduces a suboptimal
method for JPDA with performance comparison of other JPDAF methods.

Reference [22] investigates the performance of sequential and parallel implementation of multi-
sensor joint probabilistic data association (MSJPDA) based on simulations. It describes the
pros and cons of both parallel and sequential MSJPDA algorithms and provides a brief insight
on why the sequential algorithm performs better than a parallel MSJPDA algorithm in a given
setup.

1.2.4 History
Reference [23] discusses issues related to accurate detections of moving/stable targets with
single/multiple UAVs. It compares different approaches for generating accurate detections and
provides results based on simulations consisting of targets moving faster/slower than UAVs, and
stable/moving targets with/without the presence of wind. It compares all approaches with the
same environmental setups and makes inferences according to the results based on simulations.

Associating sensor measurements with target tracks is a challenge in MTT systems. Also, the
data association problem in closely stationed targets with an exponentially increased dimen-
sionality due to the state-space associated of multiple targets is a crucial problems that needs to
be dealt with. Monte Carlo joint probabilistic data-association filtering (MC-JPDAF), investi-
gated by [24], provides an efficient solution for this problem. It provides a sequential sampling
particle filter (SSPF), which samples individual targets sequentially with factorization of the
importance of weights, and an independent partition particle filter (IPPF), which assumes asso-
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ciations are independent. MC-JPDA is designed for a known number of targets with nonlinear
and non-Gaussian target dynamics whereas JPDA is designed for linear and Gaussian target
dynamics.

Reference [25] describes a wide variety of MTT algorithms according to their history/batch
length, scalability of each algorithm according to dimensionality and number of targets, com-
putational complexity, and the main approach or strategy of each algorithm. The paper states
that true/false negative detections are misleading statistics; instead, it introduces track initiation
and maintenance of a track as criteria for the MTT algorithm-comparison factor. In [25], all
MTT simulations and real world tests are done without knowing the exact number of targets in
the environment. The paper introduces suboptimal algorithms for linear systems that can deal
with noisy and cluttered environments where false alarms exist. It summarizes a wide variety
of MTT algorithms and depicts the results based on both simulation and real-world data.

Clearly MTT is a well-studied topic. [26] provides a survey about MTT algorithms with a com-
prehensive review of tracking maneuvering targets, including 2D and 3D maneuvering models.
Mathematical models used for tracking maneuvering targets are presented in [26]. Maneuver-
ing and non-maneuvering targets (dynamic models and algorithms used for these models) are
analyzed, and their pros and cons are represented in the paper.

MTT has a wide variety of applications. Example applications are radar-based tracking of
aircraft, sonar-based tracking of sea animals and submarines, video-based tracking of people
for security or surveillance, and so on. Missile-defense systems and air-traffic control are other
fields where MTT is applicable. It can be used in biology, as in [27].

1.3 Main Contributions of the Thesis
The current state of art for distributed multi-target tracking allows MTT to be achieved within
acceptable accuracy in real time. But the term acceptable accuracy is subjective and case de-
pendent.

This paper presents a novel model for performing MTT in 3D systems with the assumption of
unlimited in-swarm networking. The model introduces different solutions for different prob-
lems in MTT while providing an autonomous approach that works individually for each agent
without a centralized communication node requirement. The model uses K-means clustering for
the belief of targets, called tracks, estimation and JPDA methods for data associations. Also,
track estimates are further improved with Kalman filtering.
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In addition, we develop a simulation allowing easy testing of model variations for MTT with
realistic scenarios. The simulation simulates the members of the swarm, called agents, the
observations of each agent, called detections, and the world. The world is simulated as an
obstacle-free environment.

The simulation architecture is easily modified and tested with different methodologies. For
swarm vs. swarm systems where increasing uncertainty is introduced to the system through
nondeterministic motions, increasing numbers of targets, and varying ratios of false positive and
false negative detections, this thesis examines the accuracy of overall estimate of the number of
tracks and also measures the difference of estimated Cartesian coordinates of each track and the
true state of the actual target. The simulation is scalable to large numbers of agents and can be
conducted with different parameters.

1.4 Organization
The remainder of the paper consists of four sections. Chapter 2 describes the model formu-
lations including simulation and agent modeling. Chapter 3 identifies key methods used for
distributed MTT. Chapter 4 presents the results of the simulation. Chapter 5 concludes paper
and provides insight for future works.

1.5 Limitations and Assumptions
1.5.1 Assumptions
This paper presents a model for performing MTT. A simulation is used for testing the perfor-
mance of the MTT model. The simulation environment is assumed obstacle-free, has predefined
reflective borders, and no additional perturbations due to any changes in the environment.

Agents are modeled with a linear state-space perturbed by additive Gaussian noise to represent
nondeterministic motions. Also, agents are assumed to have perfect location information, such
as via GPS or other localization capabilities. Further, onboard sensing such as with electro-
optical cameras are assumed to generate detections. All agents in the system are identical
to each other with identical sensors yielding identically structured observation vectors for all
agents. Agents have stochastic movements with no collision avoidance where they can cross
over each other. Also agents have limited sensor coverage, and the effects of optical target
occlusion is approximated in the presented simulation.
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1.5.2 Limitations
The simulation is not designed for very large systems (e.g., 10,000 vs. 10,000 agents), as for
very large systems, there exist some approaches that allow such simulations to be executed
efficiently which are not applied in the model implementation presented herein.

In the model, agents acquire tracks from detections (i.e., observations) via K-means clustering.
When faced with sparse detections, the model, tested with different approaches for the selection
of the best number of clusters or tracks, denoted k, cannot accurate determine an accurate value
for k. For example, the proposed modified L-method for selecting k does not work accurately
when the number of detections is less than 20. In this manner, the proposed model is best suited
for addressing the swarm contexts in question.

Networking costs are typically exponential in the number of agents. As discussed above, treat-
ment of network constraints are left to future works.

Error in GPS accuracy is not represented. Also, accuracy of actual visual systems should be
studied. However, imperfect detections are introduced with error rates in order to provide a
more realistic approach. Since the real world test results of visual sensors are not available,
notional error parameters are used in the simulation. The simulation can easily be tested if the
real world test parameters are provided.
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CHAPTER 2:
Model Formulation

Consider a scenario in which two opposing swarm of unmanned aerial systems operating in
three dimensions are engaging each other. One of the swarm system is dubbed the ‘friendly
swarm,’ with its constituents called ‘agents.’ The entities constituting the other swarm are
called ‘targets,’ as illustrated in Figure 2.1.

Before discussing the methods for performing multi-target tracking, we describe the simulation
engine constructed to test strategies for performing MTT, which simulates the environment,
all agents and targets and their respective trajectories over time, and agent observations (i.e.,
detections).

The agents’ noisy observations of targets are called detections and are represented as Cartesian
coordinates with respect to some globally fixed reference frame. According to the approach
presented in this thesis, agents generate their collective belief or representation of targets’ states,
known as tracks, from the gathered detections. Each track comprises the agents’ estimates of
all target positions and speeds and the estimate error measured by its covariance.

In this thesis, agents maintain their track knowledge individually. Also, agents preserve a history
of detections and older tracks, which aids in improving track accuracy. The collective track
knowledge of an agent is known as the common operational picture (COP); that is, the COP
represents a given agent’s understanding of the current states (positions and speeds) of some or
all targets.

2.1 Simulation Implementation
The simulation itself is coded with object-oriented design in Matlab. Both simulation and agents
in the environment are created as objects. Agent objects comprise both agents, called as Allied
Agent, and targets, called as Enemy Agents, with both being inherited classes of the same ob-
ject. This simulation provides the stochastic trajectories followed by all mobile entities as well
as detections of targets. Additionally, implemented algorithms, such as the K-means cluster-
ing algorithm and Kalman filtering (described in Chapter 3), are established as objects that are
called by the agent itself1.

1The simulation is designed with MATLAB R2012a.
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(a) (from [28]) (b) (c)

Figure 2.1: Illustrations of the motivating swarm vs. swarm scenario: (a) represents different
flight phases for defending UAVs, (b) represents a generic swarm vs. swarm system, and (c)
represents a swarm attack and swarm defense scenario for a high valued unit.

The simulation requires three parameters to run: the number of allied agents, Na, the number
of enemy agents, Ne, and the total number of turns to run the simulation, that is, the maximum
simulation time, Tmax. The simulation feeds each agent with their respective detections and
detections acquired by the agent’s teammates, shared via the assumed perfect communication
network. The general outline of the simulation is portrayed in Algorithms 1 and 2.

Algorithm 1 Simulation (Part-1)
1: procedure SIMULATIONALGORITHM(Na,Ne,Tmax)
2: for i=1 to Na do
3: State←RandomState . Agents initialized biased in x dimension
4: AlliedAgents(i)←Agent (state)
5: end for
6: for i=1 to Ne do
7: State←RandomState . Agents initialized biased in x dimension
8: EnemyAgents(i)←Agent (state)
9: end for

10: for i=1 to Tmax do
11: CalculateDetections(AlliedAgents,EnemyAgents)
12: U pdateSimulation(AlliedAgents,EnemyAgents)
13: end for
14: end procedure

Algorithm 1 summarizes the workflow of the simulation. Initially, it generates ‘Allied Agents’
and ‘Enemy Agents’ and then, for each time step, the simulation provides the detections to each
agent via the CalculateDetections function, which is further detailed in Algorithm 2. After
each agent acquires and parses its respective set of detections, the simulation updates the state
knowledge of the agents in the UpdateSimulation function within Algorithm 1.
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Algorithm 2 Calculate Detections (Part-2)
15: procedure CALCULATEDETECTIONS(AlliedAgents,EnemyAgents)
16: for i=1 to sizeof (AlliedAgents) do . For each AlliedAgent do
17: NewDetections←ParseDetections (AlliedAgents(i),AlliedAgents,EnemyAgents)
18: AlliedAgents(i).GatherDetections(NewDetections);
19: end for
20: for i=1 to sizeof (AlliedAgents) do
21: for j=1 to sizeof (AlliedAgents except AlliedAgents (i)) do
22: NetworkDetections←AlliedAgents ( j).Detections
23: end for
24: AlliedAgents(i).GatherNetworkDetections(NetworkDetections);
25: end for
26: end procedure

‘Allied Agents’ acquire their detections via Algorithm 2. This algorithm uses the ParseDetections
function, detailed in Algorithm 3, to generate the detections of the agent that can be perceived
by agents’ sensors. These detections are those in the field of view (FOV) of the agent but not
occluded by any other entity in the environment. The detections that the agent acquires via
networking, referred to as ‘network detections,’ are provided in the next step. These network
detections comprise all of the detections of all agents (since a perfect and complete communi-
cation network is assumed).

It should be kept in mind that each agent itself first processes its own individual detections, then
acquires its network detections within the next iteration of the loop. In real world application,
it is assumed that agents will acquire their locally generated detections first and network detec-
tions second in each time step. This process is depicted in Algorithm 2. The detection model
used for generating detections can be seen in Equation (2.1) where N (µ,λ ) is Gaussian noise
with mean µ and standard deviation λ added to the exact state information of the true target
state.

Detection(t) = Target_State(t)+ζ , ζ ∼N (µ,λ ) (2.1)

The simulation uses Cartesian coordinates for state representations but FOV and occlusion cal-
culations are done according to spherical coordinates relative to the given agent. The orien-
tation of spherical coordinates in terms of the inertial Cartesian coordinate reference frame is
illustrated in Figure 2.2. For spherical coordinates, azimuth, elevation and r are computed as θ ,
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Figure 2.2: Spherical coordinates description with Cartesian coordinates.

φ , and distance, respectively. In FOV and occlusion computations for an agent, the agent itself
lies at the origin of the local frame, and any other object’s spherical coordinates are calculated
relative to the current agent.

It should be kept in mind that detections are generated according to the exact locations of the
targets. If the exact location of the target is not occluded, the detection is generated even if the
detection’s location is occluded. The simulation only currently checks the target location for
occlusion, rather than validating the feasibility of the detection. Higher fidelity simulations may
address this approximation in future studies.

The detection generation is handled by Algorithm 3. Detections, according to (2.1), are enemy
agents that fall in a FOV of a selected agent and not occluded by any other agent in the simu-
lation. Algorithm 3 works for each agent individually. It requires the following inputs: target
agent as ‘Agent’, all allied agents as ‘AlliedAgents’ and all enemy agents as ‘EnemyAgents’.
The output of Algorithm 3 is detections that satisfy all the required conditions; not occluded,
FOV of the agent and with Gaussian error.

For this process, first, possible detections are computed. These possible detections are the
enemy agents that reside in FOV of the target agent. For each enemy agent, their spherical
coordinates relative to target agent are computed and if these parameters are less than or equal
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to predetermined parameters, these enemy agents are accepted as possible detections. This
process is handled by the ‘FindDetections’ function within Algorithm 3.

Algorithm 3 Parse Detections (Part-3)
27: procedure PARSEDETECTIONS(Agent,AlliedAgents,EnemyAgents)
28: PosDetections←FindDetections (Agent,EnemyAgents) . Possible Detections
29: if PosDetections 6= /0 then
30: BlockingAgents← (EnemyAgents∪AlliedAgents except Agent) ∈ FOV (Agent)
31: OccDetections←OcclusionDetections (Agent,BlockingAgents,PosDetections)
32: if OccDetections 6= /0 then
33: Return Detections←AddError (OccDetections, Agent). Adds Gaussian noise
34: else
35: Return Detections← /0
36: end if
37: else
38: Return Detections← /0
39: end if
40: end procedure

After possible detections are generated, possible agents that may occlude any detection are
stated to represent blocking agents. The vector of this list of blocking agents contain the index
of all allied agents and targets that reside in the FOV of the agent in question, and is an input
to the function OcclusionDetections, detailed in Algorithm 4, and returns all detections that
are not blocked geometrically by any agent.

After all detections are computed via Algorithm 4 with occlusion taken into account, if there
still exist detections, these detections are further modified according to (2.1) via the AddError

function of Algorithm 4. At the end, Algorithm 4’s output is the detections which only has the
mean of each detection. It is quite clear that these detections become input parameters of each
agent via Algorithm 2.

After all detections are computed via Algorithm 4 with occlusion taken into account, if there
still exist detections, these detections are further perturbed according to Equation (2.1) via the
AddError function of Algorithm 4. At the end, Algorithm 4’s output is the vector of detections
which represents the true locations of each detection. It is clear that these detections become
the input parameters for each agent in Algorithm 2.

The occlusion computation, represented in Algorithm 4, requires the following inputs, namely
the agent whose perspective is considered, a vector of all agents and targets that lie within

13



Figure 2.3: An illustration of geometric occlusion in generating detections. The red and blue
agents (right) block portions of the field of view of the black (left) agent.

the given agent’s FOV, and a vector of possible detections called PosDetections. Algorithm 4
iterates over all agents and targets within the given agent’s FOV. The spherical coordinate dif-
ferences between the given agent and the ith entity in this list is computed and denoted θBlocker,
φBlocker and rBlocker. The occlusion parameters representing the angular windows which define
occlusions are θOcc and φOcc. This process allows the simulation to have generic occlusion pa-
rameters according to the relative location of the occluding entity. For each entity, each possible
detection is verified whether or not it is occluded, that is, possible detections’ spherical coordi-
nates relative to the given agent are computed as θDet , φDet and rDet , from which the occlusion
thresholds are evaluated. If a possible detection is occluded, it is removed from the possible
detections list, which prevents unnecessary computations over irrelevant detections. The output
of Algorithm 4 is a distilled vector of detections that are free from occlusion by any entity in
the environment.

The AddError function adds Gaussian noise with mean µ and covariance λ to each detection
according to Equation (2.1). In order to generate appropriately rotated noise parameters (since
measurement error is relative to the agent’s position and orientation), Equation (2.2) is used.
The simulation has predetermined noise parameters for predetermined target Cartesian locations
relative to the agent itself. The main idea in AddError is to generate accurate error parameters
according to the given target location via finding θ , φ and r parameters and applying the method
described in Section 2.1.1.

First, the relative spherical coordinate differences, θ , φ and r parameters of the target relative to
the agent, are computed according to their Cartesian coordinates. Since the simulation loads in
predefined noise parameters for a given target location, the difference between these predefined
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Algorithm 4 Occlusion Detections (Part-4)
41: procedure OCCLUSIONDETECTIONS(Agent,BlockingAgents,PosDetections)
42: for i=1 to sizeof (BlockingAgents) do . For each BlockingAgents do
43: [θBlocker,φBlocker,RBlocker]←SphericalDifference (Agent,BlockingAgents(i))
44: [θOcc,φOcc]←OcclusionParameters (Agent, BlockingAgents(i), [θDe f ,φDe f ])
45: for j=1 to sizeof (PosDetections) do . For each PosDetections, check
46: [θDet ,φDet ,RDet ]←SphericalDifference (Agent,PosDetection(j))
47: if (RBlocker < RDet)&(|θBlocker−θDet | ≤ θOcc)&(|φBlocker−φDet | ≤ φOcc) then
48: PosDetections← PosDetections−PosDetections(j)
49: end if
50: end for
51: end for
52: Return OccDetections← PosDetections
53: end procedure

parameters and newly calculated θ , φ and r parameters of the target can be computed and
denoted θdiff, φdiff and rdiff. These three parameters becomes the input for Section 2.1.1 with
a 3D noise vector (representing noise in position values). The output of Equation (2.2) is a
rotated noise vector which represents the input noise parameters of the AddError function for
each dimension according to Equation (2.1).

2.1.1 Spherical Rotation of Vectors in 3D
The simulation requires the ability to compute the spherical rotation of a vector in various parts
of the simulation. Spherical rotation of a vector is calculated according to Equation (2.2) where
a given vector v ∈ R3, and rotation angles θ and φ are inputs and the rotated vector vrotated ∈
R3 is the output. The rotation matrices governing the rotations in θ and φ , respectively, are
denoted M1 and M2, and represent counter clockwise rotations. The (·)′ notation represents the
transpose operator.

M1 =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 ,M2 =

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)


vrotated = M1 ·M2 · v ·M′2 ·M′1

(2.2)

For any given θ and φ angles, Equation (2.2) rotates any column vector v ∈ R3. This process
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Figure 2.4: An example of spherical rotation. The yellow circle (positioned lower middle)
represents the original vector and red circle (positioned upper middle) represents the rotated
vector with angles θ and φ .

is used by the simulation in a number of calculations where the input vector consists of the
parameters required by the simulation.

2.2 Agent Modeling

2.2.1 Motion Modeling
Agents can be modeled via a linear state-space model for constant speed perturbed with Gaus-
sian noise. Each agent is stored according to the Cartesian coordinate system with 3D world
coordinates and a 3D speed vector. Also it should be kept in mind that agents bounce back from
the predetermined simulation borders as described in Section 2.3. The observation model of
each agent’s state is described in Equation (2.3). This observation model is used by simulation
in order to update state of the agents, which is also represented in [29].

x(t +1) = A · x(t)+ν , ν ∼N (ω,ρ) (2.3)

In Equation (2.3), N (ω,ρ) is Gaussian noise of the motion with mean ω and covariance ρ .

The state dynamics matrix, called A, and the state of an agent at time t, called x(t), are defined
in Equation (2.4) and Equation (2.5), respectively.
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A =



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(2.4)

x(t) = (Locx(t),Locy(t),Locz(t),Vx,Vy,Vz)
′ (2.5)

Note that for the discrete time models, the time interval between t and t− 1 is assumed to be
one. For example, then, using the above definitions, Locx(t +1) = Locx(t)+1 ·Vx.

The simulation updates agents state via the UpdateSimulation function of Algorithm 1 ac-
cording to Equation (2.3). It should be kept in mind that spherical rotation described in Sec-
tion 2.1.1 plays an important role in detection generation but not in motion modeling of the
agent itself (since agent motion is in the global reference frame whereas detections are relative
to the local frame).

2.2.2 Sensor Modeling
For MTT, each measurement originates from at most one target. Some sensors may not provide
measurements at every time interval. Some measurements may arise from targets, some from
clutter and some targets may not yield any measurement at all in any particular time interval.

Measurement error characteristics are assumed to be identical for each sensor. Each detection is
assumed to be acquired from sensors, such as electro-optical cameras mounted on UAVs. The
detections potentially include observation of enemy agents that fall within the FOV of the agent
and are not occluded by any other entity in the environment, generated with Gaussian noise as
in Equation (2.1).

The detections of the agents are provided by the simulation, which allows modular study of the
MTT approaches separate from specific sensor models, and each agent parses these detections
according to their own process detailed in Section 3.1. Simulation provides both agents’ own
detections and the detections agents acquire via networked communication with teammates, as
per Algorithm 2.
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Each agent stores each detection with the three elements shown in Equation (2.6); the 3D loca-
tion of each detection is called d̄ ∈R3, the covariance or uncertainty matrix is called Σd ∈R[3,3],
and the index of the detection (stored for post simulation analysis). For detections assumed ac-
quired local to the given agent, the simulation provides d̄ of each detection, where d̄ is the detec-
tion’s Cartesian coordinates. Σd of a detection is computed by the agents itself, which accounts
for noise in each Cartesian dimension relative to the d̄. The stored detection index represents
the relationship to assigned tracks (as described later in Section 3.4.1 and Section 3.4.2). The
Σd of a local detection is computed via Equation (2.2), with the following inputs: the error
vector defining default noise characteristics for each dimension, and θ and φ representing the
spherical coordinate rotations relative to the agent’s detection.

d̄ = (Locx,Locy,Locz),

Σd =

Errxx Errxy Errxz

Erryx Erryy Erryz

Errzx Errzy Errzz

 (2.6)

It merits noting that the simulation generates a detection, which is provided to the agent, ac-
cording to its own model of the uncertainty parameters (though still based on the true target’s
location), whereas the agent processes this detection and constructs its covariance matrix based
on its own model of the noise parameters. Though for the presented work, the agent is assumed
to have an accurate model of the uncertainty, this flexibility allows for future study to examine
the impact of modeling errors in sensor characteristics.

Each agent acquires detections of its allies as network detections. These network detections
have their respective d̄ and Σd , where Σd is the covariance matrix for each detection as computed
by the originated teammate and passed along to the receiving agent. As a result, agents do not
compute Σd for network detections.

2.3 Environment Modeling
The simulation environment is obstacle free and obstacle avoidance is not considered in this
work. Agents are assumed to be able to cross over each other but are constrained to maneuver
wholly within the simulation borders, from which they simply bounce back.

Recall that the state of an agent is defined by Equation (2.5). The initial locations for each agent
and target within the simulation are determined according to a normal distribution in space,
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centered about (Locx,Locy,Locz)
′ defined for each entity. This bias parameter can allow for

investigating different initial configurations of agents and targets, though a thorough exploration
of their impact is reserved for future study.

The agents and targets tend to move towards each other according to Equation (2.3). This is
achieved via biases in Vx, Vy and Vz. These three parameters represent the speed vector of an
agent, and by appropriate specification (e.g., Vx for agents, −Vx for targets), agents and targets
can be simulated to be in approaching trajectories. The above initialization biases are predefined
in the simulation. The main highlight is the flexibility of the simulation to enable deployment
of agents and targets clustered together and/or in opposite locations.

According to Equation (2.3), at each time step, the simulation algorithm calculates the agent
state for time t + 1 and if agent exceeds the predetermined simulation borders, the speed ele-
ment(s), e.g., Vx, Vy, Vz of Equation (2.5), are negated in the dimensions where the agent violated
the simulation border. This process prevents agents from exceeding predefined simulation bor-
ders to ensure that over time, a fixed and known number of potential targets remain within the
area of operations.
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CHAPTER 3:
Distributed Target Tracking from Multiple Sensors

The important issue in performing MTT is generating an accurate common operational picture
(COP) for each agent. The strategy for generating observations (detections) and COPs for each
agent is described in this section.

3.1 General Flow
According to the simulation, there exists two types of agents; one called ‘Allied Agents’ and the
other one called ‘Enemy Agents.’ Both of these agents are the same object, but ‘Enemy Agents’
have only their state updated at each time step. In this chapter, we present the information
flow of the ‘Allied Agent’ (which, in the object-oriented sense, automatically includes ‘Enemy
Agents’). For succinctness, ‘Allied agents’ are referred as ‘agents’ in the remainder of the
discussion presented below.

In this thesis, we assume that each agent acquires its own detections via an onboard sensor, such
as a camera, and also obtains the detections of its allies or teammates via the interconnecting
network. Since a perfect network is assumed (that is, no loss, delay, or error in transmissions),
all agents are assumed to know all other agents’ detections and able to immediately parse and
process them using locally executed algorithms. In this manner, this chapter describes the
distributed target tracking methods for an individual agent in detail, and provides measures of
performance both at the individual agent and team levels.

Figure 3.1 graphically illustrates the information flow for an agent for each time step. Each
agent acquires first only its State and Detections from the simulation, as it would in physical
settings from its proprioceptive sensors (e.g., GPS, inertial sensors) and exterioceptive sen-
sors (e.g., electro-optical camera), respectively. Other than these inputs and those representing
shared detections from networked teammates, called network detections, all subsequent calcu-
lations are assumed internal to each agent.

The agent first priority is to generate the Detections from the knowledge it acquired from the
simulation which is explained in Section 3.2. After all Detections are acquired, the tracks are
generated as explained in Section 3.3. In this state of the information flow, the agent has gen-
erated its tracks and has the knowledge about which tracks originated from which Detections.
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Figure 3.1: General information flow of an agent. State, Detections, and NetworkDetections are
generated by the simulation and provided as input to the agent. This figure depicts the model
tested for any discrete time step.

Then, the tracks at time t are associated with the tracks at time t−1 via ASJPDA, as explained
in Section 3.4. This process allow us to carry out the KF parameters which is detailed in Sec-
tion 3.5. KF provides better target estimations and an important process for improving the
accuracy of the tracks.

There exists different procedures for MTT. The algorithms that uses these approaches are de-
tailed in later sections. In here, the Algorithm 5 describes the three methods used for two
purposes. These purposes do not tie to any specific methods, so they are described in this
section.
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In the Algorithm 5, the method ‘AgentAlgorithm’ is referred by the simulation in order the
provide state of the agent, which allow agent itself to acquire its state knowledge. The ‘Agen-
tUpdate’ in in Algorithm 5 is called by the agent itself at the end of each time step. This method
allow agent to store its current parameters in ‘History’ variable, up to a certain limit, via method
‘UpdateHistory’.

Algorithm 5 Agent
1: procedure AGENTALGORITHM(State)
2: State← State
3: Detections← /0
4: Tracks← /0
5: end procedure
6: procedure AGENTUPDATE(NewState)
7: U pdateHistory()
8: State← NewState
9: Detections← /0

10: Tracks← /0
11: end procedure
12: procedure UPDATEHISTORY

13: NewBatch← State∪Detections∪Tracks
14: History← History∪NewBatch
15: if size(History)> MaxSizeAllowed then
16: HistoryOldest ← /0
17: end if
18: end procedure

The methods used by the agent in order to process detection, generate tracks and improve track
estimates are further detailed in the remaining sections. The order of these processes are visu-
alized in Figure 3.1.

3.1.1 Notation and Definitions
Given the need for integration of multiple algorithmic approaches, this section identifies and
defines the notation to be used throughout the formulation. These notations can be seen in
Table 3.1, Table 3.2 and Table 3.3
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Variable Description Dimension
Na Number of ‘Allied Agents’ scalar
Ne Number of ‘Enemy Agents’ scalar

Tmax Number of turns the simulation runs scalar
ζ (µ,λ ) The Gaussian distribution for detection generation µ and λ are scalar
ν(ω,ρ) The Gaussian distribution for agent state update ω and ρ are scalar
Nn(χ,σ) The probability distribution (from Section 3.4.1.1) χ is 1×n and σ is n×n
Nn(χ,σ) The probability distribution (from Section 3.4.1.2) χ is 1×n and σ is n×n

y Current measurement (from Section 3.4.1.2) 1×n
θ Spherical coordinate horizontal angle radian
φ Spherical coordinate vertical angle radian
r Spherical coordinate distance scalar
d̄ the cartesian coordinates of the detection 1×3′

Σd the belief of error for the detection 3×3
t̄ the cartesian coordinates of the target 1×6′

Σt the belief of error for the target 3×3

Table 3.1: Table of notations and definitions, including relevant vector or matrix dimensions

3.2 Detection Processing

3.2.1 Agent Detections

The simulation provides the cartesian coordinates of each detection to the related agent. The
agent itself generates a variable called Detections stores the cartesian coordinate of each detec-
tion as the mean, called d̄.

The agent requires 2 different parameters per detection. The mean, d̄, of the detection is pro-
vided by the simulation. The second parameter, the covariance of the detection representing the
uncertainty in the detection measurement, called Σd , is generated by the agent itself. The d̄ and
Σd are described in Equation (2.6).

The agent constructs the Σd of a detection as follows; there exists a predetermined covariance,
called Σd̄ , for a predetermined cartesian location relative to the agent. First, the relative cartesian
location of the detection is computed. Since the detection’s relative location and the Σd̄’s relative
location is known, the spherical coordinates of these two locations computed. The difference of
these two locations provides the angular parameters that is needed to compute Σd . According to
Section 2.1.1, Σd̂ is rotated with the computed angles and the resulting matrix from Section 2.1.1
becomes Σd of the detections.

24



Variable Description Dimension
N number of state estimates (from Section 3.3.2) scalar
x̂i mean of state estimate (from Section 3.3.2) 1×3
Pi covariance of state estimate (from Section 3.3.2) 3×3
wi weighting coefficients (from Section 3.3.2) scalar
x̂0 fused mean of state estimate (from Section 3.3.2) 1×3′

P0 fused covariance of state estimate (from Section 3.3.2) 3×3
Ci # of centroids (from Section 3.3.1) scalar
µi the data of the centroid (from Section 3.3.1) 1×3
x j the data of the observation (from Section 3.3.1) 1×3
n length of the observations (from Section 3.3.1) scalar
n∗ length of the true positive detections (from Section 3.3.1) scalar
n+ length of the targets (from Section 3.3.1) scalar
P the coefficients of the function (from Section 3.3.1.1) 1×3
P the coefficients of the function (from Section 3.3.1.2) 1×2

RMSEn The margin of error (from Section 3.3.1.3) scalar
data Original data (from Section 3.3.1.4) x× y

data∗ Modified data (from Section 3.3.1.4) x∗× y∗

z∗ length of tracks at time t−1 (from Section 3.4.1) scalar
z length of tracks at time t (from Section 3.4.1) scalar

βt, j the likelihood of trackt with hit j (from Section 3.4.1) n×m
β0t the likelihood of trackt not associated with any hit j (from Section 3.4.1) n×1

ResultsM Association results (from Section 3.4.2) n+m×1
Results∗M Modified association results (from Section 3.4.2) n+m×1

Table 3.2: Table of notations and definitions, including relevant vector or matrix dimensions

The Algorithm 6 handles to process described above. In Algorithm 6, the Detections acquired
by the agent are assigned to the d̄. The Σd of each detection is calculated according to Sec-
tion 2.1.1, resulting the Equation (2.6), as in the Section 2.2.2. This process is handled by
‘ComputeCov’ method. There exists no network Detections yet.

In current state of the agent, all Detections are accepted as tracks without any computation. This
is due to sensor modeling of Detections where each detection can only originate from at most
one target, so each detection is already a track and if it is a false positive Detections, there is no
way distinguish it with current state of the information.
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Variable Description Dimension
x̃(k+1) prior estimates of the mean (from Section 3.5) 1×3′

Σ̃(k+1) prior estimates of the covariance (from Section 3.5) 3×3
K Kalman gain scalar

x̂(k+1) posterior estimates of the mean (from Section 3.5) 1×3′

Σ̂(k+1) posterior estimates of the covariance (from Section 3.5) 3×3
R Estimated measurement errors 6×6
Q Dynamic noise matrix 6×6

Table 3.3: Table of notations and definitions, including relevant vector or matrix dimensions

Algorithm 6 Agent
19: procedure GATHERDETECTIONS(NewDetections)
20: d̄← Newdetections
21: Σd ←ComputeCov (Detections)
22: Tracks← Detections
23: end procedure

3.2.2 False Detections

The simulation has two predetermined parameters for generating false positive and false neg-
ative detections. These parameters are used as a threshold value in order to generate false
detections.

The false negative detections, which means simulation says there exists no detection while it
should be, is generated per detection of each agents. If an agent has n detections for time t, these
detections are verified prior to feeding the agent itself. For each detection, a uniformly random
number is generated. If the uniform random number is less than or equal to the false negative
threshold value, that detection is not provided to the agent itself. This process is executed for
each detection, for a total of n times.

The false positive detections, that is, the simulation returns a detection where one should not be
present, are generated per each detection of each agent. For each detection, a uniformly random
number is generated and if this number is less than or equal to the false positive threshold value,
a new feasible (but otherwise false) detection is appended as another detection to the Detections
list of the agent. This process is executed per true detection, which may result in at most double
the number of true positive detections in worst case.
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These false detections are generated at each time step, for each agent, for each detection the
agent has for the given time t.

3.2.3 Distributed Sensing with Network Detections
Next, the agent receives (from the simulated network) the set of all detections and their respec-
tive covariances from all allied agents.

The Algorithm-7 handles network detections. Network detections of the agent are all the Detec-
tions that its allies acquired at time t. There is a possibility that an agent can acquire no network
detections if its allies have no detections themselves. It should be noted that these network de-
tections are appended to the current Detections lists and all of these are stored as Detections by
the agent itself.

Algorithm 7 Agent
24: procedure GATHERNETWORKDETECTIONS(NetworkDetections)
25: [d̄,Σd]← NetworkDetections
26: end procedure

From this point on, the simulation does not provide any more information to the agent until the
next time step.

3.3 Track Generation
After all Detections are acquired in previous steps, agent calls K-means method, explained
in Section 3.3.1. In general, K-means acquires the Detections and generates tracks, i.e., the
Cartesian location of the tracks, each denoted t̄ ∈ R6, from these Detections. After tracks are
generated, the covariance intersection method, explained in Section 3.3.2, is called in order to
generate the belief matrix of error, called Σt ∈ R[3,3], of each track. The belief error matrix
is generated as the intersection of the Σd of the detections that the track is originated from.
The covariance of the tracks is denoΣt ∈ R[3,3] of the tracks while the Cartesian location of the
tracks, each called t̄ ∈ R6.

The Algorithm-8 handles to process described above. The purpose of Algorithm-8 is to gen-
erate tracks from Detections via K-means method, described as Section 3.3.1. At the end of
the ‘KMeansClustering’ function, each track acquires its t̄. The covariance of the tracks are
generated according to the ‘CovarianceAssessment’ function, works according to Section 3.3.2.
As a result, at the end of Algorithm 7, all tracks of the agent is generated with their t̄ and Σt .
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Algorithm 8 Agent
27: procedure TRACKGENERATION(Detections)
28: [detections.Index, t̄]←KMeansClustering (Detections)
29: Σt ←CovariancesAssessment (Detections) . Determines covariance of tracks
30: end procedure

The methodologies use in track generation is explained below. It should be noted that there
exists different approaches to handle the similar problems, but the methodologies described
below are used in this paper.

3.3.1 K-Means Clustering
K-means clustering is a method for grouping given data points in the environment according
to some distance criterion. These data points may represent observations, test results or some
other information based on the application. The dimensionality of the data points may vary
according to application which means each data point is an element in Rm, where m is arbitrary
but same for all data. The only issue with increased dimensionality is the computational re-
quirements. K-means clustering requires the objective number of partitions, called centroids, in
order to cluster the data points. It can be deduced that, for the objective of k centroids C1 . . .Ck

with given n data points as xi . . .xn, K-means clustering finds the optimum number of centroids
according to Equation (3.1). In Equation (3.1), the square of Euclidian distance is used for
distance computation which is the case, but not restricted, in most of the applications.

min

(
k

∑
i=1

∑
x j∈Ci

||x j−µi||2
)

(3.1)

K-means clustering basically picks k random centroids initially and updates their location with
the nearest observation in each iteration while each centroid center is the mean of all observa-
tions belongs the same centroid. This process iterates until no observation is left unassigned to
a centroid. K-means clustering methods may vary according to the application, but K-means
clustering description provided above with Euclidean distance is used in this paper.

In this paper, K-means clustering is used for track generation. Prior to K-means clustering all
Detections of the agent, both from its own sensors and relayed from its allies, are perceived, but
not processed. It should be kept in mind that Detections acquired by its own sensors have Σd

in terms of agent itself while Detections acquired from its allies have their own Σd according to
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their originated agent. As a result, all Detections in this state of the agent workflow have their
d̄ and Σd and ready to generate tracks.

In order to generate accurate tracks from Detections, the optimum way for selecting best k needs
to be analyzed. The performance of K-means mainly depends on selecting optimum k. The
method for selecting best k affects the overall performance of the simulation. Since the exact
number of tracks in the environment is unknown, without accurate best-k selection method,
there is no way for finding accurate number of tracks which hampers the overall performance.

Selecting best k for K-means clustering is a hard problem and investigated by [11–13]. In
general, all methods for selecting the best k rely on exhaustive tries of K-means approach with
k varying from two to the maximum number of observations and analyzing these results to select
best k. This thesis investigates several similar approaches for this best k selection. According to
the simulation, data for K-means are detections in 3D, i.e., in R3 and each detection has same
characteristics for noise estimation; all agents have the same characteristic sensor and each
detection has the same characteristics with similar noise error estimates that vary according to
relative observation point.

In order to decide on best k, three different approaches are tested against each other with the
same input. The input is generated for K-means method, where k varies from two to total
number of observations and the input is, for each k, total number of centroids versus the sum
of total distance to associated centroid center for each observation. After these parameters are
generated, all three methods provide their own k estimation.

Table 3.4 is an example situation for four observations. In this case, there exists total of 4
observations and k varies 2. . .4. The table shows the results for k = 2 with the distance of
each observation to its associated centroid. In order to test the best-k selection algorithms, total
distance parameter of given k is send as input for all k values. According to Table 3.4, 6.29 is
send with k = 2 as a part of input. The input consists of all distances for each k.

For any number of data, or observations, provided as input, K-means clustering method is called
for k varies from two to maximum number of observations. When the K-means clustering
method is called with this methodology, the overall graph for any number of observation is sim-
ilar, but not the same, as long as the graph is depicted with k and ∑(Distance) where distance is
each observation Euclidean distance to its own centroid. When the graph is analyzed, for inde-
pendent number of clusters or data points, there exists always a curve with minor oscillations.
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Observations Centroid
x x z x y z Distance
1 1 1 3 3 3 3.46
3 3 3 3 3 3 0
5 5 5 3 3 3 3.46

15 15 15 15 15 15 0

Table 3.4: For observations ∈ R3 with total of 4 observation, k is selected starting from 2. . . 4.
In this table, k = 2. Each observation is associated with one of the centroids. Total distance in
k = 2 is ∑Distance = 6.92

Figure 3.2: A sample graph for number of clusters against total distance to associated centroids
for all observation.

These oscillations do not affect the overall slope of the curve, but the slope in minor sections are
affected. This curve can be seen in Figure 3.2. All methods described below try to use similar
graphs to find the best k. Since the curve does not have the same slope, it is not reasonable to
use the second derivative of the observations to find the best k.

The observation points are generated according to Equation (2.3) where the same approach is
used by simulation for generating detections from tracks. This approach allows us to create
more realistic observations. The data for analyzing best k methods, for total of n observations
(Detections), are generated as follows;

• Step 1: 10% of all Detections, which is equal to 0.1n, are generated as false positive
Detections. The number is rounded if needed. False positive Detections are randomly
generated Detections that are not originated from targets.
• Step 2: The number of false positive detections are subtracted from n, resulting in the

number denoted as n∗. These Detections need to originate from targets. As a result, it is
accepted that the ratio between target and Detections is 1 to 10. Due to this assumption,
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10% of n∗ is accepted as the number of targets, and the resulting number, called n+ is
rounded if needed.
• Step 3: For each target t, one detection is generated according to Equation (2.3).2This

process is repeated for each target until the number of detections equal to n+.
• Step 4: Merge real Detections with false positive Detections. It should be noted that

0.1n+n∗ = n.
• Step 5: Call K-means clustering algorithm for k = 2 . . .n. Generate data matrix which

is n× 2 where first column consists of current value of k and second column consists
of ∑

n
i=1(distancei) where distance is Euclidian distance of Detections to their associated

centroid.

According to this methodology, each detection, if it is not a false positive detection, is originated
from a true target and detections originated from same target clustered as a result. This situation
is similar to the real world scenario where Detections from the same targets clustered in the
same region. K-means clustering is one of the best method that can be used in these kind of
situations.

The methods described in Section 3.3.1.1, Section 3.3.1.2 and Section 3.3.1.3, same data is used
as input for each one of them. The term data refers to n×2 matrix as explained above. For given
data, each method tried to find k and the estimate of k is compared with exact number of targets,
n+, that generates the data. The parameter x and y in these sections are refer to first column of
data and second column of data respectively.

3.3.1.1 Exponential Fit
The first method tested for K-means is exponential fit approach which is also used in [30].
In this approach, the defected curve, seen in Figure 3.2, is approximated by an exponential
function, shown in Equation (3.2).

P = P1 +P2 · e−x/P3 (3.2)

Err =
n

∑
i=1

(
y− [P1 +P2 · e−x/P3]

)2
(3.3)

2Same equation is used by simulation to generate Detections from tracks, not from targets.
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The main goal in exponential fit is to generate a function, formulated as Equation (3.2), that
fits the defected curve resulting from the data. Since a perfect fit, a function formulated as
Equation (3.2) with margin of error zero meters away from the defected curve, is not feasible
to calculate, an error function is needed in order to accept the result of exponential fit function.
The error function is formulated as Equation (3.3).

The exponential function, Equation (3.2), takes P ∈ R3 and x as input, and the error function,
Equation (3.3), takes P ∈ R3, x and y as input. The parameters estimated for exponential fit
are evaluated with Equation (3.3) and when they fall within a certain threshold according to
Equation (3.3), the result is accepted as a valid solution. The initial guess for P is not very
crucial since P updates iteratively and converges closer to the exact values in time. It should
be kept in mind that Equation (3.3) is used to determine when to accept current P valid or not.
Since P converges closer to exact P parameters that fits perfectly to resulting curve from data,
an error function is needed for finalizing the computation of P.

After exponential fit function, formulated as Equation (3.2), with appropriate P parameter is
generated, best-k can be estimated. According to function, x and y parameters can be formu-
lated. The y dimension decreases in each time step (see Figure 3.2), and 90% reduction from
first y parameter is accepted as best k. Here y parameter is used as a reference point and the x

component of y parameter with 90% reduction is returned as best-k.

3.3.1.2 Polynomial Fit
Polynomial fit is similar to the method described in Section 3.3.1.1. In polynomial fit, the
polynomial fit with degree one, formulated as Equation (3.4), is used to formulate the defected
curve resulted from the data. The polynomial fit is used for similar purposes in [30]. In this
section, the P ∈ R2. The x is input where F(x) should equal to y for corresponding x and y

parameters. The polynomial fit tries to find the best P parameters that satisfies these results.

f (x) = P1 · x+P2 (3.4)

The Equation (3.4) can be visualized as a straight line which cannot fit the shape depicted in
Figure 3.2. The polynomial fit is not used with x and y parameters of data, instead log(x) is
used as x parameter while y parameter left untouched. When the log(x) against y parameter is
plotted, a similar figure of Figure 3.3 can be seen. It is quite clear a straight line that can fit
Figure 3.3 is not very hard to calculate. It should not be forgotten that no perfect P parameters
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Figure 3.3: An example graph for polynomial fit. It should be noted that the graph consists of
log(x) and y parameters of the data in Section 3.3.1.1.

for Equation (3.4) need to be founded, instead an error function is used in order to accept P
parameters with a certain error.

The polynomial fit is the least unlikely method to find a perfect function that can fit Figure 3.2.
But the advantage of polynomial fit is its computational requirements. Amongst the three meth-
ods for best-k selection, polynomial fit with degree one is the least demanding in terms of
computation.

After P parameters for Equation (3.4) is generated, best-k can be estimated. According to the
current knowledge of polynomial fit, the x and y parameters can be formulated with Equa-
tion (3.4) and best k can be found with ease. As explained Section 3.3.1.1, the y parameters
decrease in each time step (see Figure 3.2). 90% reduction from first y parameter is accepted
as best k. Different from the Section 3.3.1.1, instead of x component of y parameters with %90
reduction is returned as best k, the ex is returned as best k. The reason behind this conversion
is about the generation of x data for polynomial fit. In this section x data is the log(x) of actual
data, so ex provides us the exact x parameter provided in the first place.

3.3.1.3 L-method
There exists different methodologies for finding the best k. Different methodologies investigated
for this purpose. In this paper, the third method used for selecting the best k is L-method,
introduced by [13]. The explanations for L-method and its analyze against similar methods can
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Figure 3.4: Possibilities of line fits for seven data points (from [13])

be found [13]. The explanations are derived from [13].

This method is a candidate method for best k selection and analyzed against other methods
described in Section 3.3.1.2, Section 3.3.1.1. The main goal of L-method is to find the knee
point of a curve and since K-means clustering returns a defected curve (see Figure 3.2), L-
method can become beneficial for finding the best k.

L-method tries to find the knee of the curve via fitting two lines to the curve: the first one in the
left side of the curve and the second one in the right side of the curve. The intersection point
of these lines is accepted as knee of the curve, called the index. For any given m data point
of a curve, there exists m− 4 different ways of fitting two curves to the data according to the
constraints described in [13].

The L-method tries to fit the lines to the curve for seven data points can be seen in Figure 3.4.
It is clear that each line needs at least two data points for line fitting while each point can only
belong to one line. Also, the points belong the same line need to be continuos. As a result, it
can be inferred that, for given m data points, the L-method tries to assign first n data points to
one line and m−n to the other line while each line has at least 2 data points. (n≥ 2, m−n≥ 2)
Computing a perfect line fit to a curve is infeasible, so a modified error function, Equation (3.5),
is used for measuring the accuracy of line fits and accepting the results as valid or not.

The L-method uses total root mean square error (RMSE) for measuring the accuracy of line fits.
Assuming the left line is depicted by Ln, where Ln consists of data points 1 . . .n, and the right
line is depicted by Rn, where Rn consists of data points n+ 1 . . .m, and n is the index point as
the intersection of two lines, the graph consists of m data points and n can vary from 2 to m−3.
The total RMSE of line fits can be computed as in Equation (3.5), where the goal is to minimize
the RMSEn. According to [13], L-method works efficiently for 20 or more data points. Since
L-method requires at least 2 data points for both lines, without a modification to the current
algorithm, it can only be used for data point more than 4.
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RMSEn =

(
n−1
m−1

)
RMSE(Ln)+

(
m−n
m−1

)
RMSE(Rn) (3.5)

For each n, where n= 2 . . .m−3, RMSEn is generated via Equation (3.5). After error parameters
for n is generated, Equation (3.6) which selects the minimum RMSE amongst the all different
line combinations where n = 2 . . .m−3, is used for selecting the best k. The x paramater which
provides the least error via Equation (3.5) is accepted as best k.

Bestk = min(∀(RMSEi)|i = 2 . . .m−3) (3.6)

The L-method, as described in [13], cannot provide accurate results for the length of data less
than 20. As a result, for data less than 20, a modified version of L-method is used for the
index. This process mainly tries to expand the data without changing the shape of data, instead
introducing intermediate points to the data in order to provide enough data points.

3.3.1.4 Modified L-method

In this paper, in order for selecting best k, different algorithms are analyzed. According to the
problems investigate in this paper, the method for selecting best k should be able to handle
length of data more or equals to 2. But, the L-method cannot handle data with length less
than 20. In order to compensate for this problem, a modified version of L-method is derived. It
should be kept in mind that modified L-method introduced in this paper is not related to [13] and
invented for test purposes. [13] cannot be hold responsible for the results derived via modified
L-method.

In order to prevent deal with the situation where length of data is less than 20, the modified
L-method generates new y and x parameters of the data without losing the orientation of the
original data. From this point point, the length of data is referred as d for simplicity. Modified
L-method introduces d−1 data points at each interval unless d ≥ 20. In this paper, this process
is referred as data expanding.

The first step is to generate x∗ and y∗ according to Equation (3.7), from the original data x and
y. The size of the new data∗, with x∗ and and y∗ has the length d∗, where d∗ = 2×d−1. After
x∗ and y∗ is generated, the even indice are filled via Equation (3.8).
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x∗(2×i−1) =
d

∑
i=1

x(i), y∗(2×i−1) =
d

∑
i=1

y(i) (3.7)

x∗(2×i) =
d

∑
i=1

x(i)+ x(i+1)

2
, y∗(2×i) =

d

∑
i=1

y(i)+ y(i+1)

2
(3.8)

After data∗ is generated via Equation (3.7) and Equation (3.8), and d∗≥ 20, L-method is applied
for data∗. If d∗ � 20, then data expanding method explained above is repeated for data∗ until
d∗ ≥ 20.

After best k is estimated via L-method for data∗ is executed, the corresponding x∗ that mini-
mizes Equation (3.5) is acquired. But the real x is found by comparing x∗ of data∗ against x of
data. The x closest to the x∗ is accepted as best k estimate for L-method.

This approach for length of data less than 20 does not guarantee accurate knee estimation, but
neither do the other methods. The results of all methods are explained in Section 3.3.1.5

3.3.1.5 Evaluation of Clustering Approaches
All these methods described in Section 3.3.1.1, Section 3.3.1.2 and Section 3.3.1.3, are tested
against each other for a varying test cases with 10000 runs each. In each test case, as explained
above, the exact number of detections provided as input where 10% of these detections as false
positives, while the remaining detections are generated in the vicinity of pre-generated tracks.
The ratio between detection against its originated track is 10% which means each track is likely
to generate 10 detections on average while the total number of detections preserved at the end.
According to these criteria, the results seen in Figure 3.5, Figure 3.6, Figure 3.7, and Figure 3.8
are generated.

The results in the figures can be summarized as Table 3.5. It can be seen that, for any number of
detections, in general, L-method provides the most accurate results, followed by ‘ExpFit’ and
‘LogExpFit’ with the least accurate results. The L-method used in ‘# Detections’ less that 20 is
the modified method that is described above. Even if the modified method is not guaranteed to
work efficiently, it still works with some accuracy.

It should be noted that both methods described in Section 3.3.1.1 and Section 3.3.1.2 find the
best k via 90% reduction in y parameters. This also means that same methods use 10% height
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(a) Scenario: 1 Track originates 3 Detections with 0 False Positives

(b) Scenario: 1 Track originates 5 Detections with 1 False Positives

Figure 3.5: Test results for finding Best-K. ExpFit is described in Section 3.3.1.1, LMethod is
described in Section 3.3.1.3 and LogExpFit is described in Section 3.3.1.2. RealValue shows
the exact number of tracks, ‘real k’, that originates the detections. Methods that finds closer
results to ‘real k’ are more accurate. For each scenario, 10000 Monte-Carlo runs established.
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(a) Scenario: 1 Track originates 10 Detections with 1 False Positives

(b) Scenario: 1 Track originates 15 Detections with 2 False Positives

Figure 3.6: Test results for finding Best-K. ExpFit is described in Section 3.3.1.1, LMethod is
described in Section 3.3.1.3 and LogExpFit is described in Section 3.3.1.2. RealValue shows
the exact number of tracks, ‘real k’, that originates the detections. Methods that finds closer
results to ‘real k’ are more accurate. For each scenario, 10000 Monte-Carlo runs established.
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(a) Scenario: 2 Tracks originate total of 25 Detections with total of 3 False
Positives

(b) Scenario: 5 Tracks originate total of 50 Detections with total of 5 False
Positives

Figure 3.7: Test results for finding Best-K. ExpFit is described in Section 3.3.1.1, LMethod is
described in Section 3.3.1.3 and LogExpFit is described in Section 3.3.1.2. ‘SumDistanceTo-
Centroid’ shows the exact curve of the data. Methods that find closer results to ‘# of Tracks’
are more accurate. For each scenario, 10000 Monte-Carlo runs established. The location of
the index boxes that shows the ‘Best-K’ the associated method is found, is slightly shifted for
readability purposes. 39



(a) Scenario: 9 Tracks originate total of 100 Detections with total of 10 False
Positives

(b) Scenario: 23 Tracks originate total of 250 Detections with total of 25 False
Positives

Figure 3.8: Test results for finding Best-K. ExpFit is described in Section 3.3.1.1, LMethod is
described in Section 3.3.1.3 and LogExpFit is described in Section 3.3.1.2. ‘SumDistanceTo-
Centroid’ shows the exact curve of the data. Methods that find closer results to ‘# of Tracks’
are more accurate. For each scenario, 10000 Monte-Carlo runs established. The location of
the index boxes that shows the ‘Best-K’ the associated method is found, is slightly shifted for
readability purposes. 40



Real Parameters Simulation Results
# Detections # FP # Tracks L Method ExpFit LogExpFit

3 0 1 2 3 3
5 1 1 3 2 3

10 1 1 3 2 5
15 2 1 3 4 8
25 3 2 2 6 11
50 5 5 5 13 20
100 10 9 8 7 36
250 25 23 16 11 81

Table 3.5: The results of selecting best K algorithms. ExpFit is described in Section 3.3.1.1,
LMethod is described in Section 3.3.1.3, and LogExpFit is described in Section 3.3.1.2. The
red numbers represent the closest estimate in terms of the real number of tracks.

# Detections # FP # Tracks Height of the index
5 1 1 0.0182

10 1 1 0.0421
15 2 1 0.2136
25 3 2 0.1042
50 5 5 0.0743

100 10 9 0.0585
250 25 23 0.0352

Table 3.6: For each scenario, the parameters of the scenario are described under the ‘Real
Parameters’ column, and the distance from the x dimension of the ‘real index’, or ‘Best-K’,
or ‘Number of Tracks’, is described under the ‘Height of the index’ column. The real index
distance is normalized for each scenario. The methods described in Section 3.3.1.1 and Sec-
tion 3.3.1.2 are using %0.9 reduction ratio from the maximum distance which is same as 0.1000
‘Height of the index’ in this table. The normalization is done for each scenario itself. It should
be noted that normalization is not done after all heights for all scenarios are computed. Each
normalization of ‘Height of the index’ is independent from any other scenario.

of y parameters as critical value. 10% is not a guaranteed ratio that can find the best k. In order
to see what is the real height of y for real value, Table 3.6 is generated from the same data that
generates the Table 3.5. For each given scenario, the exact height of y parameter, called ‘Height
of the index’, against the real number of targets, called ‘# Tracks’, is shown in Table 3.6. It
is quite clear that even with a fixed ratio of false positives, the height varies 0.0182. . . 0.2136.
The methods described in Section 3.3.1.1 and Section 3.3.1.2 used 0.1000 as height but it is
concluded that there exists no way to find a fixed height parameter. So the results from the
methods described in Section 3.3.1.1 and Section 3.3.1.2 cannot be further improved.
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The due the performance of L-method and inability to further improve methods described in
Section 3.3.1.1 and Section 3.3.1.2, L-method, Section 3.3.1.3, is accepted as the main and
only method for finding the knee of the curve after K-means clustering is called. For any given
number of Detections, L-method is used. If the length of the data is less than 20, modified
version of L-method, Section 3.3.1.4, is used as described above.

In this paper, K-means method is used for track generation. The analyzes in Section 3.3.1.5
shows that K-means algorithm works best with L-method according to the constraints intro-
duced. According to the information below, after agent acquires all of its Detections, K-means
method is called, as described in Section 3.3.1. K-means acquires Detections and generates
tracks from these Detections. After tracks are generated, covariance intersection method de-
scribed in Section 3.3.2 is called in order to generate the belief matrix of error, called Σt , of
each track. Section 3.3.2 generates the intersection of the Σd of the Detections that generates
the associated track. The Σt of the tracks are ∈ R[3,3] while location of the tracks, called t̄, are
∈ R6.

3.3.2 Covariance Intersection
Covariance intersection method, described in [10], fuse the state information of multiple Gaus-
sian state estimations. Covariance intersection method tries to fuse the all covariance informa-
tion in order to generate the intersection of all covariance knowledge. In this paper, the method
described by [10] is used.

Assume there exists N state estimates with mean x̂i and covariance Pi of state i, with weighting
factor wi, the fused mean of states is denoted x̂0 with covariance P0. According to [10], the fused
covariance of multiple Gaussian state estimations can be computed via Equation (3.9) and the
mean of a Gaussian state estimation can be computed via Equation (3.10). It should be noted
that without computing the covariance P0, the mean of states, x̂0 cannot be computed.

P−1
0 =

N

∑
n=1

wn P−1
n (3.9)

P−1
0 x̂0 =

N

∑
n=1

wnP−1
n ∗ x̂n (3.10)

Though [10] does not introduce a specific method to generate weighting factor wi, the sum of all
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wi should add up to one. In the presented work, wi is generated as the trace of the covariance, Pi,
of each state i and normalized afterwards. So, weighting factors satisfy the criterion introduce
by [10].

In this paper, covariance intersection method is applied in Algorithm-9. According to the in-
formation flow of the agent, prior to covariance intersection, agent has the tracks generated and
t̂ is assigned for each track. Also, the relationship between Detections and tracks is known.
The covariance intersection is called for the Detections that the track is originated from. For all
Detections, according to Equation (3.9) and Equation (3.10), the Pi equals to the Σd and x̂i is
equals to d̂.

Algorithm 9 Agent
31: procedure COVARIANCEASSESSMENT(Detections)
32: for t=1 to sizeof (tracks) do
33: DetectGrp←∀Detections generates Tracks(t)
34: for i=1 to sizeof (DetectGrp) do
35: Pi← Σdi

36: wi← normalize(trace(Pi))
37: P−1

0 ← wi ∗P−1
i

38: end for
39: P0← normalize(P0)
40: for i=1 to sizeof (DetectGrp) do
41: x̂i← d̂i
42: x̂0← wi ∗Pi ∗ x̂i
43: end for
44: x̂0← P0 ∗ x̂0
45: t̂← x̂0
46: Σt ← P0
47: end for
48: end procedure

The covariance intersection, which generates the Σt for tracks, is generated by Algorithm 9.
This algorithm first generates a group of detections, called ‘DetectGrp’ that consists of the
Detections where the track is originated from, and use this ‘DetectGrp’ to extract d̂ and Σd and
generate x̂i and Pi for each detection.3

After all wi, x̂i and Pi are generated for given ‘DetectGrp’, the Σt is generated according to the

3The Detections that generates the same track becomes state estimation in here. Both state estimation and
detection refers the same parameter.
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Equation (3.10). This process is depicted in Algorithm 9.

It should be noted that the Σt of a track is the belief matrix of noise for each state dimension
of the track that is generated as the intersection of each track’s relevant detections’ Σd . The t̄

of a tracks is its cartesian coordinates. Even if d̄ and Σd for detections and t̄ and Σt for tracks
provides the same information, they are generated with different approaches.

Covariance Intersection method is used to compute the aggregated uncertainty from the clus-
tered detections. The collective output of these steps are tracks, which possess both a mean
value and covariance matrix, representing the fused sensor measurements and uncertainties. It
should be noted that both K-means method and covariance intersection generates mean values
of given data, which equals to t̄ in this paper, but the K-means results are assigned to the t̄. The
results of covariance intersection is not used for this purpose.

3.4 Track Association
After agent acquires its all detections, it needs to analyze them for further improvements. The
main goal in this process is to use KF to further improve the target estimates. In order to use
KF, the parameters of the KF needs to be carried over throughout the time for the associated
tracks. All of this process is handled in this section.

All of this process is handled as seen in Algorithm-10. Except for the first time an agent is
called, agent tries to associate tracks at time t with its tracks at time t−1. In order to associate
tracks, agent finds the likelihood of all possible associations via ‘JPDA’ function, which is
detailed in Section 3.4.1. JPDA generates β and β0 probabilities which depicts the all possible
likelihood parameters for all tracks.

The results of the ‘JPDA’ is further analyzed by ‘Munkres’ function, as explained in Sec-
tion 3.4.2. The ‘Munkres’ function provides the association of tracks according to the given
likelihood parameters. At the end of Section 3.4.2, each track at time t is associated the tracks
at time t− 1. If a track has no associated track in preceding time step, it is accepted as a new
track.

For each track that has an associated track in preceding time step, the KF parameters are carried
over to the current track. This is crucial for KF in order to work efficiently which is detailed in
Section 3.5. For any other track that has no associated track in preceding time step, a new KF
is initialized. After each track acquired its own KF parameters, all of the tracks parameters are
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Algorithm 10 Agent
49: procedure PARSETRACKS(tracks)
50: if History(t) 6= /0 then
51: [β ,β0]←JPDA (History(t).Tracks, tracks)
52: Indice←Munkres (β ∪β0)
53: NewTrackIndice← Tracks 6∈ Indice
54: if Tracks ∈ Indice then
55: Tracks.KF ← History.Tracks.KF
56: end if
57: if Tracks ∈ NewTrackIndice then
58: Tracks.KF ← KalmanFiltering()
59: end if
60: end if
61: t̄,Σt ← Tracks.KFU pdate()
62: end procedure

updated according to KF, which is detailed in Section 3.5. By applying KF to each tracks, t̄ and
Σt parameters are further improved.

All of the methods used in this section are further detailed by the following sections.

3.4.1 Joint Probabilistic Data Association
One of the key issues in MTT systems is the association of observations with their relevant
tracks at each time step in order to identify the tracks. The association problem—means associ-
ating each observation with its relevant target—is investigated by [16–21, 31] and many more.
In order to solve this problem, one of the well-known method is known as JPDA. JPDA method
provides accurate results when the number of tracks in the system is known. But when the op-
posite situation is the case, the accuracy of observations association with tracks diminishes. The
JPDA method provides optimal results with increased computational requirements as the com-
plexity arises. In order to deal with computational requirements of JPDA, there exist different
versions for similar MTT situations.

One of the different version of JPDA algorithm is known as Suboptimal JPDA that requires less
computational requirements but provides suboptimal solutions with heuristic approach instead
of an optimal solution. Suboptimal JPDA’s accuracy diminishes when the False Positive (FP)
observations introduced to the system. One of the another method, introduced by [21], can
provide better results with same complexity when FP observations are introduced to the system.
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This method is known as the Augmented Suboptimal JPDA (ASJPDA) algorithm and described
in [21] with its comparisons against other JPDA methods.

The ASJPDA, which is used in this paper, is introduced by [21]. The explanations below for
ASJPDA is derived from [21]. The detailed explanation for ASJPDA and its complexity analyze
against similar algorithms can be found in [21].

ASJPDA consists of 7 steps and generates two different tables at the end in which one table
provides association probabilities of observations with their relevant targets where other table
provides the probability of observations of not having any relevant target. ASJPDA does not
provide one to one associations of observations against targets. There exists different methods
in order to deal with this problem which is described in Section 3.4.2.

According to the information flow of an agent, ASJPDA is called when an agent has parsed its
detections, generated its tracks, but not called KF for any track. The agent tries to associate its
total number of z∗ tracks at time t-1, depicted as Trackst−1

z∗ , against total number of z tracks at
time t, depicted as Trackst

z. In this case, Trackst−1
z∗ become observations and Trackst

z become
targets. It should be kept mind that both Trackst−1

z∗ and Trackst
z are observations of the agent

for different time steps. Agents have no knowledge of targets.

[21], in the paper, uses the terms tracks and hits which corresponds Trackst−1
z∗ and Trackst

z

respectively in this case. The term tracks and hits will be used from this point on.

The main reason for calling ASJPDA is to associate tracks with their respective tracks in the
previous state. This process allows both to identify tracks and improve their estimates via KF,
which needs to carry out its parameters at each time step, as described in Section 3.5.

Since the tracks are Trackst−1
z∗ , their current state estimates needs to be computed. This process

is handled according to state dynamic matrix in Equation (2.4) with the formula Equation (2.5)
prior to ASJPDA algorithm but does not stored as new Trackst−1

z∗ for the agent. Only their
predicted state of time t is send as tracks for ASJPDA.

The first step in ASJPDA is to determine the validated hits of each track t and form At , shown in
Equation (3.11). The second step is to do the same process for hits, which means to determine
the validated targets of each hit j and form C j, shown in Equation (3.12).
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At = ∑
j∈At

Hits j (3.11)

C j = ∑
t∈C j

Trackst (3.12)

The validation process of hits against tracks or vice versa is handled by Bhattacharyya distance,
described in Section 3.4.1.1. Bhattacharyya distance, used with a hit and a track, is used to
determine the similarity of two discrete or continuous probability distributions. Since each hit

and each track in JPDA is a continuous probability distribution, Bhattacharyya distance is used
to compute the extension gate of a track or hit. When the Bhattacharyya distance is computed
for given hit and track, the predetermined threshold value is used to determine whether or not
to accept the hit in the extension gate of the given track or vice versa. If the Bhattacharyya
distance is less than predetermined threshold value, the hit is accepted in the extension gate of
the track.

After the first and second steps in ASJPDA are executed, for each track t, the tracks that may
fall in the extension gate of validated hits of given track t is computed and stored as Lt , as the
third step. The Lt excludes the associated track t while including all other tracks that are in the
extension gate of its validated hits. This can be formulated as Equation (3.13).

Lt =
⋃
j∈At

C j−{t} (3.13)

After Lt is generated, cardinality of the largest measurement index is computed and stored as ct

as in Equation (3.14).

Lt = max
u∈Lt
|Au| (3.14)

According to the number of hits in the extension gate of track t, the association probabilities of
track with its validated hits is computed according to Equation (3.15). In this paper, the Ωt or
Θty parameters are used instead of Pt in order to prevent ambiguity.
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Pt =

 Ωt = Λt j if |At |= 1
Θty = max

k∈At ,k 6= j
Λtk if |At |> 1 (3.15)

It is quite clear that Equation (3.15) uses Λth parameter in order to generate results both for Ωt

and Θty.4 Λth is the Gaussian probability of the likelihood value of given track t against given hit

h. The process of computing the likelihood of track against a hit is described in Section 3.4.1.2.

For each track t and its validated measurement hit j, the Dt j is computed as Equation (3.16) in
accordance with Equation (3.17), Equation (3.19) and Equation (3.18).

Dt j =


Λt j( ∑

u∈Lt

Ntu j +b) if ct ≥ 2

Λt j + ∑
u∈Lt

Qu j if ct < 2
(3.16)

Ntu j =


Θu j if |Au| ≥ 2 and j ∈ Au

Ωu if |Au|= 1 and j /∈ Au

Λt j otherwise

(3.17)

Qu j =

{
Ωu if j /∈ Au

0 otherwise
(3.18)

According to Equation (3.19), it is required to decide on clutter spatial density and target detec-
tion probability, which is represented as λ and PD in Equation (3.19) respectively. These two
parameters are predetermined and need to be evaluated wisely. If they don’t evaluated wisely,
they may hamper to overall efficiency of ASJPDA.

b =
λ (1−PD)

PD
(3.19)

After all the parameters explained above is computed, for each track t, Bt needs to be computed
as in Equation (3.20). It should be noted that Equation (3.19) has impact on both Equation (3.16)
and Equation (3.20).

4Here, Λth represents both Λt j and Λtk of Equation (3.15).
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Bt =


b(b+ ∑

u∈Lt

∑
j∈At

Λu j) if ct ≥ 2

b+ ∑
u∈Lt

∑
j∈At

Λu j otherwise
(3.20)

Finally, for each track t, the probabilities of a tracks association with its validated hits j are
computed in Equation (3.21) while a track is not associated to any hit is computed in Equa-
tion (3.22).

βt j =
Dt j

Bt +∑k∈At Dtk
(3.21)

β0t =
Bt

Bt +∑k∈At Dtk
(3.22)

For each row of β and β0, the sum of each row adds up to 1 as can be seen in Equation (3.23).

m

∑
j=0

Bt j = 1 (3.23)

It should be keep in mind that ASJPDA provides probabilities of a track association with its
validated hits with a probability that a track is not associated with any hit. These probabilities
are returned as β and β0 respectively. ASJPDA never provides insight of how to accept a hit
in the extension gate of a track, how to compute association probability of a track and a hit,
and how to associate each track with a hit or accept a track is not associated with any hits. The
first two problems mentioned here is solved according to Section 3.4.1.1 and Section 3.4.1.2.
The last problem, which is all about how to use β and β0 parameters at then end, is solved in
Section 3.4.2.

In design perspective, after the first time step of ASJPDA, for each track, if the track has no val-
idated hit, it is accepted that ASJPDA is not needed since no track has no hits in their extension
gate. As a result, ASJPDA returns β as 0 and β0 as 1 for each track t in Equation (3.21) and
Equation (3.22) without making any more computation.
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3.4.1.1 Bhattacharyya Distance

The Bhattacharyya distance, which is used in this paper, is introduced by [32]. The explanations
below for Bhattacharyya distance is derived from [32] and the detailed explanation can be found
in [32]. There exists applications that uses Bhattacharyya distance such as [33]. It is a well
studied method that used in wide variety of applications.

For any given continues probability distribution, the similarity of given two distribution, or the
overlap of two statistical distribution, can be computed via Bhattacharyya distance. In this
paper, each distribution used in Bhattacharyya distance, which is shown in Equation (3.24), is a
Gaussian distribution with mean vector χ , as in Equation (3.25) and positive definite covariance
matrix Σ, as in Equation (3.26).

x = Nn(χ,Σ) (3.24)

xn = [X1,X2, . . . ,Xn] (3.25)

Σn,n =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

... . . . ...
an,1 an,2 · · · an,n

 (3.26)

When both distributions are Gaussian, the Bhattacharyya distance of two distribution becomes
Equation (3.27) and Equation (3.28)

Σ =
Σ1 +Σ2

2
(3.27)

DistB =
1
8
(χ1−χ2)

T
Σ
−1(χ1−χ2)+

1
2

ln
(

detΣ√
detΣ1 detΣ2

)
(3.28)

Since the probability distributions for Bhattacharyya distance are acquired from the JPDA al-
gorithm, it can be deduced that both distributions, which are the hits and the tracks described
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in Section 3.4.1, are Gaussian. When agent workflow is traced back, it can be concluded that
these hits and tracks are tracks of the agent at time t and t−1 respectively. It is known that these
tracks are generated from Detections of the agent as described at Section 3.3.1. Each detection
is acquired from target according to Equation (2.1) and Equation (2.6). As a result, it can be
concluded that both hits and tracks have same properties in which both has positive definite
covariance matrix, which becomes Σ of Equation (3.27) and Equation (3.28), and mean, which
becomes χ of Equation (3.28).

When hits and tracks of the JPDA are investigated, it can be seen that both hits and tracks have
the mean t̂ ∈ R6, used as χ in Equation (3.29) and Equation (3.30) respectively. Since χHits

consists of 0 parameters in its last 3 elements and Σt of both tracks and hits, which are computed
according to Section 3.3.2, are ∈ R3∗3, optimum way to compute Bhattacharyya distance is to
ignore last 3 elements of χ . This process is also required for dimension compliance of χ with
Σ.

χHits = [Val1,Val2,Val3,0,0,0] (3.29)

χTracks = [Val1,Val2,Val3,Val4,Val5,Val6] (3.30)

When a hit and a track is used as an input for Equation (3.28), it uses both track’s and hit’s hatt

as χ and their Σt as Σ parameter and returns the similarity value of given track and hit. Since
the Σ is positive definite matrix, as it is built in that way starting from initialization phase of the
agents, both Σ−1 and detΣ can calculable and ∈ R[3,3]. As a result, it can be concluded that the
DistB of Equation (3.28) is ∈ R1.

3.4.1.2 Probability Density Function
The multivariate Gaussian distribution is the extended case of one dimensional normal distri-
bution. A normal distribution of variable x can be described as Equation (3.24). The multi-
dimensional Gaussian distribution, which is the extended case for one dimensional Gaussian
distribution, is investigated by [34]. The detailed explanation of Equation (3.31), which is used
in this paper, can be found in [34].

Since the multivariate normal distribution of a n-dimensional random vector x can be written
as Equation (3.24) with mean vector χ and covariance matrix Σ as seen in Equation (3.25) and

51



Figure 3.9: PDF distribution of vector x with χ = 0, Σ = σ where the probability of a point
belongs to the vector x is computed as the area under the curve. (Figure taken from [35].)

Equation (3.26) respectively, the probability of any given point that may belong to vector x can
be computed as Equation (3.31). The Gaussian distribution of any x can be visualized as in
Figure 3.9. Both the left and the right hand of the Figure 3.9 goes to ∞. The area under the
curve represents the probability of a point that may belong to x. It should be noted that the
probability depends of χ and Σ are parameters of x and the location of the point, lets call it y

point. As a result, for any point y, the probability of point y belongs to Gaussian distribution x,
which is denoted as fX(y), can be computed as Equation (3.31) where χ and Σ are parameters
of Gaussian distribution x, and y is the point with its location for Gaussian distribution x.

fX(y) =
1√

(2π)n det(Σ)
exp
(
−1

2
(y−χ)T

Σ
−1(y−χ)

)
(3.31)

Equation (3.31) is applicable as long as the Σ is positive-definite, which is the case in this paper
as explained in Section 3.4.1.2. If Σ is not positive-definite, there exists other functions to
compute the probability which is not needed in this paper. The PDF is used for computing the
probability of a hit that may belong to the given track. The Σ parameter is Σt of the given track,
y−χ is computed as the difference of the t̂ of given hit and track. Due to the reasons explained
in Section 3.4.1.1, only first 3 dimension of the t̂ parameter of tracks and hits are used for y

computation of Equation (3.31).
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It should be kept in mind that, in this paper, Section 3.4.1.1 is used to generate Equation (3.11)
and Equation (3.12) while Section 3.4.1.2 is used to generate Equation (3.15). [21] does not
define a specific method to compute Equation (3.11), Equation (3.12) and Equation (3.15), but
these two methods are used in this paper.

3.4.2 Munkres Algorithm
The assignment problem in polynomial time with minimum cost is a problem that is investigated
throughout the time. The assignment problem can easily depicted with matrices where each cell
of the matrix represents the cost of its associated row and column. For any given problem, if
the problem can be represented in a matrix form where each cell is the cost of its associated
row and column, the problem can be solved via Munkres algorithm, which is also known as
Hungarian algorithm. The original algorithm is designed for square matrices, [36], while it is
extend to rectangular matrices via [37].

A simple example can easily portray how to adapt a problem to a matrix form. Lets assume
there exists three different users, ‘Jack’, ‘John’ and ‘Jill’ where each one of them can perform
‘Swimming’, ‘Running’ and ‘Jogging’ at gym. The energy cost of each activity for each person
can be seen in Equation (3.32). The Munkres algorithm can found the least cost solution as long
as the problem is depicted as Equation (3.32).


Swimming Running Jogging

Jack 1 2 3
John 3 3 3
Jill 3 3 2

 (3.32)

Here, Equation (3.32), Munkres algorithm finds that Jack needs to swim, John needs to run and
Jill needs to jog in their exercise for minimum energy cost. As long as the matrix established
properly, Munkres algorithm finds the minimum cost.

The extended case for Munkres algorithm for rectangular matrices, which is used in this paper,
is introduced by [37]. The explanations below for extended Munkres algorithm is derived from
[37]. The detailed explanation of the algorithm and complexity analyze can be found in [37]

Lets assume a problem similar to the example above is analyzed and matrix A is formed where
r is the number of the rows, c is the number of the columns and k and l are computed as
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Equation (3.33). The extended Munkres algorithm, which is described below with six steps,
is used for association problem of the matrix A. In order to describe the flow of the algorithm
these six steps of Munkres algorithm, introduced by [37], used as a reference.

k = min(A) l = max(A) (3.33)

In general, Munkres algorithm keep track of 0 elements of matrix A, which are known as
‘starred zeros’ and stored to matrix Z. When a 0 element of a matrix is found, it is starred
in order to keep track of known 0s and stored to Z matrix. In this paper, Z matrix is used for
this purpose. The steps of [37] are described below.

Prior to initialing Munkres algorithm, k, l, r and c of matrix A is computed. Then the process
starts according to Equation (3.34).

Step =

 A+ =
r

∑
rr=1

c

∑
cc=1

Arr,cc = Arr,cc−min(Arr) then go to Step 0 if r > c

go to Step 1 if r < c
(3.34)

• Step 0: For each column of matrix A+, generate matrix A++ by subtracting the smallest
entry of the column from each entry of the column for each column. Assign A++ to
matrix A. Then, go to step 1.
• Step 1: Find a 0, Z, of matrix A. If there is no ‘starred zeros’ neither in its rows nor in its

columns, star Z. Iterate this process for each 0 element of matrix A. Then, go to step 2.
• Step 2: Cover every column that contains ‘starred zeros’ in its elements. If k columns are

covered, ‘starred zeros’ are the independent set, the result. Otherwise, go to step 3.
• Step 3: Choose a non covered 0 and prime it, referred as ‘prime zero’. If there exists no

‘starred zero’ in the row of the selected ‘prime zero’, go to step 4. Otherwise cover this
row and uncover the column of Z. Iterate this process until all 0s are covered. Then, go
to step 5.
• Step 4: The sequence of ‘starred zeros’ and ‘primed zeros’ is alternated as follows: As-

sume Z0 represents the ‘prime zeros’, Z1 represents the ‘starred zeros’ in Z0’s columns,
and Z2 represents the ‘primed zeros’ in Z1’s row. Iterate this process until it stops at
‘prime zeros’, Z2k, which has no ‘starred zeros’ in its column. When this is achieved,
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Unstar each ‘starred zeros’ of the sequence and convert ‘prime zeros’ of the sequence to
‘starred zeros’. Uncover all lines and ‘prime zeros’ and return to step 2.
• Step 5: Assume h is the smallest non covered element of matrix A. Add h to every covered

row A and subtract h from every uncovered row A. Without modifying ‘prime zeros’,
‘starred zeros’ and covered lines, go to step 3.

According to the information flow of an agent, the extended Munkres algorithm is used after
ASJPDA is executed, prior to KF for each track. ASJPDA provides β matrix and β0 column
vector as a result where each member of β or β0 can be utmost 1, according to Equation (3.23).5

Since there is no guarantee that a square matrix is generated from β and β0, the process for
matrix generation is explained below, the methodology depicted in [37] is required in order
solve the association problem for rectangular matrices. It should be kept in mind that after
ASJPA, there exists n number of tracks, m number of hits and n 6= m or n = m can be true.

Munkres algorithm only accepts one matrix and associates one row per column. As a result,
in order to allow Munkres algorithm to decide a track has any associated hit or not, β0 column
vector is converted to a diagonal matrix as seen in Equation (3.35) and concatenated with β ,
as seen in Equation (3.36) to generate one matrix where each track is a row and each hit is a
column.

Matrixβ0 = diag(β0) =


β0[1,1] · · · 0

... . . . ...
0 · · · β0[n,n]

 (3.35)

Matrix = (Matrixβ0|β ) =


β0[1,1] · · · 0 β1,1 · · · β1,m

... . . . ...
... . . . ...

0 · · · β0[n,n] βn,1 · · · βn,m

 (3.36)

It is quite clear that each row of matrix in Equation (3.36) adds up to 1, according to Equa-
tion (3.23), which means each cell of the matrix is less than or equal to 1. Since each cell
represents the probability of a track associated with a hit and Munkres algorithm tries to find
the least cost for given matrix, it will return the least likely association between tracks and hits
in its current state. In order to prevent this situation, the inverse of the each cell of the matrix in

5β , β0, tracks and hits represents the same properties of Section 3.4.1
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Equation (3.36) is multiplied by 1 which can be seen in Equation (3.37).6

Matrixr,c =
n

∑
r=1

m+n

∑
c=1

(
1

Matrixr,c

)
(3.37)

In Equation (3.37), divisor may be 0, which is unidentified in terms of mathematics. Actually
if any cell of the matrix is 0, it means its associated track and hit has 0 probability of asso-
ciation, which needs to be ignored. In order to solve this problem, when a cell has 0 in it, it
becomes ∞ in Equation (3.37) which is the input for extended Munkres algorithm. Since the
extended Munkres algorithm tries to find minimum cost for association, ∞ cells are ignored
automatically.7

When the Munkres algorithm, accepting Equation (3.37) as input, returns results, called ResultM,
the ResultM is just a column vector which portrays each targets associated hits. But since the
input is modified as described above, the output need to be converted to appropriate format.
The variable n is subtracted from the result in order to ignore β0 entries of the input as seen
in Equation (3.38). From the resulting column, if the results are less than 1 they are assigned
as 0, which can be seen in Equation (3.39). Each 0 member represent the tracks that has no
associated hits.

Result∗M = ResultM−n (3.38)

Associations =
n

∑
i=1

Result∗M(i)
=

{
Result∗M(i)

= 0 if Result∗M(i)
≤ 0

Result∗M(i)
= Result∗M(i)

otherwise
(3.39)

The current state of the results, after Equation (3.39), depicts the tracks and their associated
hits. When the flow of information is traced back, tracks are trackst−1

z∗ and and hits are trackst
z.

The Results∗M shows the association between trackst−1
z∗ and trackst

z, each 0 element of Results∗M
shows that associated hits have no tracks, which means related trackst

z has no association with
trackst−1

z∗ , and that tracks∗t is a new track found at time t. As a result, for all hits that does not
have associated tracks accepted as a new trackt

z by the agent.

6Matrixr,c of Equation (3.37) is the same matrix of Equation (3.36)
7There exists a special for ignoring the ∞ cells of the matrix
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The ASJPDA modified such that it returns both Results∗M and NewTracksM where NewTracksM

is derived from zero elements of Results∗M which means these hits is not associated with any
track.

3.5 Kalman Filtering
Kalman filtering, introduced by [7], is one of the most common methods for estimation and
filtering. It is a linear, time-invariant estimator with known state dynamics where Gaussian
noise is introduced for measurements. The KF works in two phases where it iteratively updates
its state estimates. At each time step, KF provides better estimates. In general, the first time
step in KF provides the most error prone estimates.

In the first step of KF at time t, it predicts the state of the given system with their uncertainties.
Then, in the second step, at time t + 1, it generates a Kalman gain according to observation
and uses Kalman gain as a correction factor for estimation. The predictor of a Kalman filter is
described in Equation (3.40), the Kalman gain is computed according to Equation (3.41) and
corrector is applied according to Equation (3.42).

x̃(k+1) = A · x̂(k)
∑̃(k+1) = A · ∑̂(k) ·AT +Q

(3.40)

K = ˜
∑(k+1) ·CT · [C · ˜

∑(k+1) ·CT +R]−1 (3.41)

x̂(k+1) = x̃(k+1)+K · [y(k)−C · x̃(k+1)]

∑̂(k+1) = (I−K ·C) · [A · ∑̃(k+1) ·AT +Q]
(3.42)

The KF requires the system dynamics to be known, which is applied to the filter, Equation (3.40),
via A. In this paper, A is used as in Equation (2.4). Also, the R in Equation (3.41) stands for
estimated measurement errors which is initialized as in Equation (3.43) in this paper. The R in
Equation (3.41) uses the Σt of the target as its upper left sub matrix with its predefined diagonal
matrix of ErrorEstimate as its lower right sub matrix. The rest of the R matrix is 0 as seen in
Equation (3.43). It should be noted that upper left corner of R matrix changes at each time step
according to covariance of the track.
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R6,6 =

[
Σt 0[3,3]

0[3,3] diag(ErrorEstimate)

]
=



Σtx,x Σtx,y Σtx,z 0 0 0
Σty,x Σty,y Σty,z 0 0 0
Σtz,x Σtz,y Σtz,z 0 0 0

0 0 0 ErrorV x,V x 0 0
0 0 0 0 ErrorV y,V y 0
0 0 0 0 0 ErrorV z,V z


(3.43)

The matrix Q in Equation (3.42) is called dynamic noise matrix. In this paper, it is initialized
as if in the Equation (3.44) where the NoiseError of Equation (3.44) is predetermined in the
initialization phase of KF.

Q6,6 = diag(NoiseError)=



NoiseError 0 0 0 0 0
0 NoiseError 0 0 0 0
0 0 NoiseError 0 0 0
0 0 0 NoiseError 0 0
0 0 0 0 NoiseError 0
0 0 0 0 0 NoiseError


(3.44)

In this paper, KF is used for each track after JPDA is initialized and ResultsM and NewTracksM

of Section 3.4.2 are acquired. The KF is used for each track in order to further improve their
state estimates at each time step. When the flow of information is traced back according to
Section 3.1, it should be noted that the t̂ and the Σt of the track itself is used as an input at
each time step. The Σt of tracks is used in Equation (3.43) while the t̂ of the track is y(t) of
Equation (3.41).

KF uses previous steps’ x̂(t − 1) and ∑̂(t − 1) as input parameters in time step t. Also, KF
estimates the tracks’ t̂ and Σt at each time step via Equation (3.42). tracks t̂ and Σt are updated
according to Equation (3.42).

Since KF requires the previous step’s x̂(t−1) and ∑̂(t−1), it is initialized for per track and the
x̂(t− 1) and ∑̂(t− 1) are carried over according to the result of Section 3.4.2. The associated
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tracks at time step t−1 and t, are used for carrying over the KF parameters of associated track
at time t− 1 to track at time t.8 As a result, KF can preserve its parameters at each time step
which is crucial for KF.

8The tracks at time t−1 are trackst−1
z of Section 3.4.1 and the tracks at time t are trackst

z of Section 3.4.1
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CHAPTER 4:
Simulation Results

The goal of the simulation is to evaluate the strategy introduced for performing MTT in different
scenarios and to identify performance issues. Each scenario introduced different challenges for
MTT.

4.1 General Outline
We designed the simulation architecture presented in this thesis to address the variety of multi-
target tracking applications and configurations. The main goal of the simulation is to provide
realistic detections to the simulated agents while recording their respective track information
and comparing these tracks against true target information. The accuracy of the track generation
process and accurate identification of tracks in subsequent time steps are the two criteria used
as performance metrics. For each situation, different systems parameters, such as target and
agent numbers, sensor characteristics, and environment size, are provided as simulation inputs.
In addition to their impact on multi-target tracking performance, these parameters affect the
overall simulation in terms of computational complexity and time.

For post analysis, the simulation maintains a log tracking performance of each individual agent
over the evolution of the scenario. One of the key performance metric is the pairwise Euclidean
distance between each generated track and each of the targets’ true state (i.e., position and linear
speeds) in the environment. The performance is evaluated for the minimal-distance pair, that
is, for the target location closest to the given track location, capturing the discrepancy between
the agents’ common operational picture and the true state of all targets. It should be noted that
although the simulation maintains a mapping of detections to tracks (e.g., for evaluation of the
clustering algorithms), it does not record the association of the noisy detections to the targets
from which they are generated. This focuses the study presented in this thesis on the role of the
algorithmic framework for creating and maintaining high level information, i.e., tracks, rather
than managing and processing lower level information such as detections.

We rigorously study and present results for four scenarios to test the simulation and the per-
formance of the integrated algorithms presented in Chapter 3. Each scenario progresses in
complexity, as assumptions are relaxed and additional considerations are incorporated, showing
their impact on performance metrics.
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Section 4.2 presents a baseline scenario under simplifying assumptions of deterministic initial
conditions for both agents and targets and no uncertainty in their transit nor in detections gener-
ated. Section 4.3 preserves only the assumption of perfect detections (that is, now all agent and
target initial conditions are randomized and move according to a noisy constant velocity model),
and also increases the number of agents and targets to examine the implementation’s scalability.
In Section 4.4 and Section 4.5, we introduce false positive and false negative detections to the
simulation, in addition to other sources of noise (e.g., initial conditions, motion of both agents
and targets), and evaluate their impact on the multi-target tracking performance. All other pa-
rameters for simulation are held fixed across all four scenarios, such that the impact of certain
variables (e.g., randomization, uncertainty, scale) can be observed in each of the investigated
scenarios.

The predefined parameters shared by each simulation are described in Table 4.1. All of these pa-
rameters are kept same for each simulations in order to observe the affects of varying situations
impact on mission goals. The parameters not represented in Table 4.1 are assigned arbitrarily
for each simulation and described in each simulation’s own section.

All parameters in Table 4.1 is acquired for each scenario.

4.2 Scenario One – Baseline
4.2.1 Scenario One Description
The first scenario examines a baseline case to demonstrate the characteristics of the component
algorithms developed in this thesis. This scenario contains three agents and three targets, and
the simulation time is assumed to be 50 turns. In this simplified initial study, the motion models
of both allies and targets are assumed known and perfect (i.e., , with ω as 0 and ρ as 0 for
ζ [ω,ρ] of Equation (2.3)). As a result, each agent moves in a deterministic manner.

Each agent state is initialized according to the parameters in Table 4.2, representing determin-
istic initial conditions and fixed speeds in only one dimension. In order to prevent agents from
reaching the boundaries of the simulation and bouncing back, as described in Section 2.3, the
simulated boundaries of the environment have dimensions of 250, 100, and 100 units of length
for x, y, and z dimensions, respectively.

As a final simplification, no false positive or false negative detections are injected into the
simulation.
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Variable Description Value
AAXCoor The bias in x coordinates when initializing ‘Agents’ 0.1
EAXCoor The bias in x coordinates when initializing ‘Targets’ 0.9

Vx The bias in Vx coordinates in initialization 3
Vy The bias in Vy coordinates in initialization 0.85
Vz The bias in Vz coordinates in initialization 0.85

Lengthx The default length in x coordinates for occlusion 0.2
Lengthy The default length in y coordinates for occlusion 5
Lengthz The default length in z coordinates for occlusion 0.3

µ The horizontal FOV of agents 1.0470
λ The vertical FOV of agents 0.7853
r The depth of the FOV of agents 70
X The default ζ (µ,λ ) Gaussian distribution for x dimension µ=0, λ=1.5
Y The default ζ (µ,λ ) Gaussian distribution for y dimension µ=0, λ=0.7
Z The default ζ (µ,λ ) Gaussian distribution for z dimension µ=0, λ=0.5
ρx The Gaussian distribution for agent states dynamics 0.4
ρy The Gaussian distribution for agent states dynamics 0.4
ρz The Gaussian distribution for agent states dynamics 0.4
ρVx The Gaussian distribution for agent states dynamics 0.3
ρVy The Gaussian distribution for agent states dynamics 0.3
ρVz The Gaussian distribution for agent states dynamics 0.3
Qx,x The Q matrix of KF 0.15
Qy,y The Q matrix of KF 0.15
Qz,z The Q matrix of KF 0.15
λ The default parameter for ASJPA 6.30E-62
PD The default parameter for ASJPA 0.95

Acceptancelimit The criterion for extension gate in ASJPDA 160

Table 4.1: Simulation Parameters

4.2.2 Scenario One Results
Individual Agent Tracking Performance

After the simulation executing for 50 turns, the following results are acquired. Consider Agent
1 and its representation of the common operational picture. For agent 1’s first track in its array
of all tracks, we identify the true target closest to the given track, and plot the evolution of the
position estimates over time in x, y, and z dimensions, respectively, in Figure 4.1, 4.2, and 4.3.

According to Figure 4.1-4.3, it is clear that the agent is able to keep track of the target quite
accurately for each dimension. The agent occasionally loses the track in some time intervals,
but as long as it has continuous track knowledge, the state-estimate errors are quite low. When
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Agent Type State Parameters
# Locx Locy Locz Vx Vy Vz

Agent 1 10 8 55 3.1 0 0
Agent 2 12 10 50 3 0 0
Agent 3 8 12 45 3 0 0
Target 1 15 8 55 3.1 0 0
Target 2 21 10 50 3.1 0 0
Target 3 19 12 45 3.2 0 0

Table 4.2: The initial states of three agents and three targets in Scenario One. Note that the
motion of these agents is deterministic.

(a) (b)

Figure 4.1: x dimension views of Target 1 and Agent 1’s closest track in Scenario One. (a) The
x dimension plots for both Target 1 and Agent 1’s closest track (b) The x dimension error of
Agent 1’s track and Target 1

the agent loses the target and finds it again after some time, the state estimate error is initially
very high but converges quickly within approximately four time steps. As long as an agent keep
track of the target, it has very low tracking errors in position, which averages to less than 1.5
meters in each dimension for these continuous track intervals. The agent keeps track of target
with average errors over all time (including those where the track is lost and regained) of 7, 0.8,
and 1.5 meters for x, y, and z dimensions, respectively.

Further inspection of the scenario results identifies the element with the greatest impact on
target position estimates by the agents to be the Kalman filter for refining track estimates. The
KF improves target estimates as long as the prior knowledge of the track is carried over. When
a track t is first generated by the agent, the Kalman filter estimates are initialized with default
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(a) (b)

Figure 4.2: y dimension views of Target 1 and Agent 1’s closest track in Scenario One. (a) The
y dimension plots for both Target 1 and Agent 1’s closest track (b) The y dimension error of
Agent 1’s track and Target 1

parameters representing prior information, t̂ and Σt . This leads to initially large errors in the
estimate of the track, although the convergence to steady state with better accuracy is rather
quick.

Aggregate Team Tracking Performance
In addition to assessment of tracking performance for individual agents, we inspect the team
performance over all the agents. Recall that at each time step, each agent generates tracks with
state estimates t̂ ∈ R6. Given the fixed number of targets in the environment, each of which is
also represented by their six position- and linear-speed true states, the difference between each
track and its associated (i.e., closest) target is computed. Each of these differences at each time
step shows how accurately the collective tracks are generated. The average of these differences
between tracks and their associated (closest) targets can be seen Figure 4.4, and represents the
aggregate tracking performance.

Figure 4.4 shows the aggregate error as box plots over all tracks and their associated targets, and
though there may be peaks in the statistics on occasional time steps, the average value of the
error decreases exponentially as expected after each peak. This is due to the KF improving of
tracks’ state estimate. Averaging the position errors over the duration of the simulation yields
deviations of 7.21, 0.81 and 1.59 meters for x, y and z dimensions, respectively, whereas the
speed errors for Vx, Vy, and Vz are 2.80, 0.26 and 1.30 meters per second. The greatest errors are
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(a) (b)

Figure 4.3: z dimension views of Target 1 and Agent 1’s closest track in Scenario One. (a) The
z dimension plots for both Target 1 and Agent 1’s closest track (b) The z dimension error of
Agent 1’s track and Target 1

found in the x direction, due to the motion of the targets in this dimension. Note that although
there is no noise introduced for agent motions and detections, error can still be introduced
by missing detections due to occlusions, improper clustering, errors in track association (e.g.,
when two targets cross paths), etc. These additional sources of imperfect tracking highlight the
challenge of multi-target tracking frameworks, even in restricted cases, as in this scenario.

Estimation of Number of Targets
Recall that the target count is fixed at three throughout the simulation. However, the agents
do not know the true number, but must estimate it based on the observations. As explained in
Section 3.4.1, agents attempt to associate tracks at time t with the tracks at time t−1. When one
or more tracks appear not to have an associated history, new tracks are initialized, along with
a new Kalman filter to refine the track estimates. The average count, over all agents, of newly
initialized tracks, labeled “New Initialized Tracks,” and tracks that have associated tracks from
previous time steps, called “tracks Associated with History,” are illustrated in Figure 4.5.

Figure 4.5, we see, on average, 2.93 associated tracks and 0.37 new tracks. On average, 3.30
tracks are found throughout the simulation, even if there exists three targets. This shows us that
agents generate slightly more tracks than targets, which reflects the results of track-generation
methods. Since everyone is sharing all detections knowledge, track generation methods may
generate more tracks than really exists. But the number of tracks on average is very close to the
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Figure 4.4: Box plots for the tracking error for all state variables of the agents over all tracks
and associated target pairings in Scenario One. Average values show exponential convergence
to steady state, with large covariances (from newly instantiated tracks) diminishing quickly
upon continuous tracking.
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Figure 4.5: The mean number of associated tracks at time t vs. tracks at time t−1 for all agents
in Scenario One. If tracks have no association, they are accepted as new tracks without prior
knowledge.

real number, three. It can be inferred that in this simulation, K-mean works with great accuracy.
Also, the modified L-method, explained in Section 3.3.1.4, generated quite accurate results with
the number of detections at most nine.

According to Figure 4.5, at each time step, the average number of tracks not associated with
prior track is 0.37. As noted in this scenario, each enemy is in the FOV of at least one agent
at all times. The lower the number of ‘New Initialized Tracks’, the more accurate the model
is. The best possible outcome for this scenario is that the number of ‘New Initialized Tracks’ is
zero (true 70 percent of the time).

Scenario One shows that track estimation is not accurate when targets are first assigned to new
tracks. Furthermore, the longer an agent tracks a target, the better the estimate, up to a threshold
value for each dimension separately. The model estimates the state of a target quite accurately
after it is detected for at least three consecutive time steps. Also, it is observed that the modified
L-method provides acceptable results with the low number of detections.

4.3 Scenario Two – Many Sensors, Many Targets
4.3.1 Scenario Two Description
The second scenario relaxes most of our assumptions from Scenario One by including twelve
more agents and targets each (fifteen each in total), adding randomized initial positions and con-
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Figure 4.6: An example configuration of simulation at time t = 1 of Scenario Two. Red markers
(diamonds) are agents, blue markers (circles) are targets and green marker (hexagram) is a track.

stant speeds, as well as sensor noise. False positive and negative detections are not included. As
described in Section 2.2.1, the agents and targets move according to a constant velocity model,
perturbed by Gaussian random noise. Such perturbations are more realistic representations of
physical settings than Scenario One and account for modeling errors as well as environmental
(e.g., wind) effects. With an increased simulation time of 100 turns combined with a smaller
bounding box (a cube with width, depth, and height of 100 meters), agents running into the
borders reflect off keeping them in the simulation. Figure 4.6 illustrates the initial (randomized)
configuration of agents and targets in the presented scenario.

4.3.2 Scenario Two Results
Individual Agent Tracking Performance
After the simulating for 100 turns, the following results are acquired: To illustrate the per-
formance, consider Agent 1 and its track of the nearest target, denoted Target 1. A graphical
representation of the trajectories over time of both Agent 1 and of Target 1 is seen in Figure 4.7.
Also depicted are the resulting tracks from all agents associated with Target 1. Visible in Fig-
ure 4.7 is the boundary enforcement behavior where the agents reflect off the walls. Despite this
nonphysical behavior (to ensure a constant number of agents in the environment), we see the
track estimate errors spike as linear trajectory models fail and the Kalman filter must stabilize.
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Figure 4.7: The plot of 1 Target (red/diamond) and 1 Agent (blue/circle) throughout Scenario
Two. In each five time steps, all tracks of all Agents are plotted (green/hexagram). The markers
in this figures are time stamps of agents and tracks. This figure exemplifies the trace of agents
with tracks.

The errors representing the difference in position of the track estimate with the true position
of Target 1 is illustrated in Figure 4.8-4.10. Note that Agent 1 does not maintain a consistent
track for Target 1 throughout the entire simulation, as illustrated by missing intervals of the
track for segments of time. These gaps are caused not only by dropped tracks due to the MTT
framework, but also due to the fact that Target 1 may no longer be in the field of view of agents
from which to generate (shared) detections. This issue is revisited when trying to estimate the
total number of targets in the environment, but merits highlighting the challenge of distributed
multi-target tracking from multiple mobile sensors when coverage of the entire environment
at every scan (i.e., time step) is not guaranteed (unlike in fixed sensor stations with known
coverage footprints).

Similar to the behavior observed in Section 4.2, the agent accurately estimates the target’s state
after three consecutive time steps of continuous track. As before, convergence to minimal
steady-state estimation error is possible for these segments. In this scenario, the agent is seen
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(a) (b)

Figure 4.8: x dimension views of Target 1 and Agent 1’s closest track in Scenario Two. (a) The
x dimension plots for both Target 1 and Agent 1’s closest track (b) The x dimension error of
Agent 1’s track and Target 1

(a) (b)

Figure 4.9: y dimension views of Target 1 and Agent 1’s closest track in Scenario Two. (a) The
y dimension plots for both Target 1 and Agent 1’s closest track (b) The y dimension error of
Agent 1’s track and Target 1

to lose track of the target in different time steps, which is expected due to the randomized
movements of both agents and targets. For example, the longest duration of continuous track
achieved by Agent 1 for Target 1 in this scenario is ten time steps.

For this agent and its track of Target 1, the average position errors over the duration of the
simulation run are 7.21, 7.67, and 6.10 meters in x, y, and z, respectively. The magnitude of the
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(a) (b)

Figure 4.10: z dimension views of Target 1 and Agent 1’s closest track in Scenario Two. (a)
The z dimension plots for both Target 1 and Agent 1’s closest track (b) The z dimension error
of Agent 1’s track and Target 1

error in the x estimate is similar to that seen in Section 4.2, though with the addition of random
motions in the other coordinate directions, we see an increase in the estimate error as expected.

Aggregate Team Tracking Performance
We can once again investigate the team performance for overall multi-target tracking error,
illustrated in Figure 4.11, which shows the bar plots of the evolution of error for each state
variable over time. There aren’t bar plots for t = 1 . . .7, for as agents have not established
tracks.9 We see that the mean-aggregate estimate error for the state is (10.03, 7.99, 7.17) meters
for position and (5.06, 5.63, 5.41) meters per second for linear speeds. As will be seen in
Figure 4.12, for any given time t, if the number of newly initialized tracks exceeds the number
of historically associated tracks, the distribution of the errors for each dimension will result in
wider bars or variance, due to the reasons explained in Section 4.2 related to the convergence
properties of the Kalman filter.

Another key distinction from the previous study is the absence of abrupt peaks in error estimates
over the course of the simulation. Given the explicit randomness of motion and its stationarity
(i.e., randomness properties doesn’t change over time), this scenario offers a more uniform
behavior, likely to be more characteristic and comparable to realistic scenarios.

9All targets are out of the FOV of the all agents
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Figure 4.11: Box plots for the tracking error for all state variables of the agents over all tracks
and associated target pairings in Scenario Two. Throughout the scenario, there exists an average
tracking errors for each dimension that results due to the randomization of all agents.
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Estimation of Number of Targets
The parameters of track association throughout the simulation can be seen in Figure 4.12; on
average, there are 4.29 targets tracked by each agent of 15 targets in the scenario. It should be
keep in mind that, in all scenarios, every agent shares its detection information with each other.

Figure 4.12: The mean number associated tracks at time t vs. tracks at time t−1 for all agents
in Scenario Two. If tracks have no association, they are accepted as new tracks without prior
knowledge

According to Figure 4.12, the average number of tracks associated with history is 1.97 and the
average number of newly initialized tracks is 2.32. The ratio between the tracks associated
with history and the newly initialized tracks is close to 1 indicating that in each time step, both
situations are equally likely. It can be inferred that, even when sharing all detection knowledge,
agents cannot continuously keep track of all targets in the simulation (it is observed that targets
get out of the FOV of all agents), which causes an increased number of track initialization in
each time step.

In this scenario where perfect networking for sharing available detections among the entire team
is allowed, we suspected that keeping track of all targets is not achievable without a special area-
coverage algorithm implemented among the agents to avoid FOV dropouts, since no explicit
control is imparted on the agents to ensure coverage.

Furthermore, though the complexity of this scenario is substantial compared to the previous
one, the comparable tracking performance levels indicate that the proposed framework offers
good applicability to more realistic and operationally relevant settings.
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4.4 Scenario Three – Impact of False Detections
4.4.1 Scenario Three Description
The third scenario investigates the more challenging context of including both false positive and
false negative detections, as formulated in Section 3.2.2. The false positive and false negative
detection rates are set to 10%, and 5%, respectively, which implies that there are more spuri-
ous detections than true targets unobserved in a given time step of the simulation. All other
simulation, environment, sensor, and agent parameters are exactly the same as in Section 4.3,
notionally illustrated in Figure 4.7.

4.4.2 Scenario Three Results
Individual Agent Tracking Performance
As previously, we investigate the ability of a single agent to track a particular target and show
the evolution of the track estimate overlaying the true target state, as well as its errors, in Fig-
ures 4.13-4.15.

(a) (b)

Figure 4.13: x dimension views of Target 1 and Agent 1’s closest track in Scenario Three. (a)
The x dimension plots for both Target 1 and Agent 1’s closest track (b) The x dimension error
of Agent 1’s track and Target 1

We find that with the addition of false detections, the estimate errors are noticeably greater than
in the previous scenario, with position errors measured 22.61, 6,11, 7.36 meters in respective
coordinate directions. As before, some of these errors are introduced by the occasional lost
tracks and/or initialization of new tracks and their impact on the Kalman filtering processes.
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(a) (b)

Figure 4.14: y dimension views of Target 1 and Agent 1’s closest track in Scenario Three. (a)
The y dimension plots for both Target 1 and Agent 1’s closest track (b) The y dimension error
of Agent 1’s track and Target 1

(a) (b)

Figure 4.15: z dimension views of Target 1 and Agent 1’s closest track in Scenario Three. (a)
The z dimension plots for both Target 1 and Agent 1’s closest track (b) The z dimension error
of Agent 1’s track and Target 1

We would expect the estimates and their errors to decrease and converge over continuous obser-
vations of the target. But this is not the case here. In some cases, the error decreases, while in
other time intervals, we observe an increase in error, though it appears the track is maintained
continuously. Unlike before, the KF no longer seems to converge within approximately three
time steps. We conclude that the injection of false detections, and in particular, the high rate of
false positive detections, negatively impact this convergence, since additional outlying detec-
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Figure 4.16: The plot of 1 Target (red/diamond) and 1 Agent (blue/circle) throughout Scenario
Three. In each five time steps, all tracks of all Agents are plotted (green/hexagram). The
markers in this figures are time stamps of agents and tracks. This figure exemplifies the trace of
agents with tracks

Figure 4.17: The mean number associated tracks at time t vs. tracks at time t−1 for all agents
in Scenario Three. If tracks have no association, they are accepted as new tracks without prior
knowledge
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tions not associated with true targets will lead to initialization of more (false) tracks, each with
large initial errors and covariances.

Aggregate Team Tracking Performance
Figure 4.18 once again shows the evolution of the track estimate errors for each dimension
averaged over all tracks. In this simulation, we expected to have slightly higher outliers in
Figure 4.18, due to false positive detections, but we observed that the number of outliers is
similar to that in the Figure 4.11. It can be concluded that false detection rate of 10% does not
greatly alter the mean-aggregate estimate errors. The amount of false detections is something
agents can handle without degraded performance (though there is some performance decline).
The false detections are handled by the K-means algorithm without generating too many false
tracks (tracks either consists of false positive detections or alterations from the original state of
the target due to false negative detections).

The dimensions x, y, z, Vx, Vy and Vz have 12.20, 9.94, 9.22, 5.49, 6.12 and 5.88 meters of
the mean aggregate estimate error respectively. These parameters are slightly higher than in the
Figure 4.11.

According to Figure 4.17, on average, it can be seen that there are more newly initialized tracks,
as 2.78, than tracks associated with history, as 1.62. On average, each agent has 4.40 tracks,
while there are fifteen targets. These results are slightly better than in Figure 4.12. We observed
that false detections cause high error results compared to Section 4.3. But, in terms of number
of tracks, the agents handled false detections perfectly and generated a more accurate number
of tracks, which was unexpected.

According to these results, we inferred that the performance in JPDA algorithm is slightly worse
(with a higher number of newly initialized tracks), but the performance of L-method is slightly
better (with a more accurate number of tracks) compared to Section 4.3.

The associated track of Agent 1 and Target 1 can be seen in Figure 4.16. This figure depicts
the trace of an agent and a target throughout the simulation. Also, it shows the all tracks of all
agents associated with the given target, plotted with time intervals.

In Figure 4.16, it can be seen that the target executes high angle rotations at times 16 and 86.
There is no track association at time 86, but when the tracks at time 16 are investigated, there is
a higher number of aggregate estimate errors, in terms of track location vs. target location, due
to the knowledge of the state of the agent.
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Figure 4.18: This figure, in Scenario Three, depicts the mean error of all agents for each dimen-
sion in terms of the difference of each track and its associated target.
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In general, Agents assume that the Targets proceed according to its trajectory. A high angle
rotation, which is within the limits of the targets, is an unlikely situation that causes deviation
from the expected state of the targets. When the time steps between t = 16 . . .35 are investi-
gated, it has seen that the agent couldn’t manage to associate tracks in given time steps, instead,
generate a new track in each 2 or 3 time steps which causes higher mean aggregate estimate
errors due to newly initialized KF. The agent manages to keep track of the target after time step
37.

Scenario Three shows that false detections have a negative impact on the mean estimate error
of the agents. On average, the x, y and z dimensions mean-estiamte errors that are 2.05 meters
higher mean estimate errors while the Vx, Vy and Vz dimensions have mean-estimate errors that
are 0.46 meters higher.

4.5 Scenario Four – Sensitivity to False Detections
4.5.1 Scenario Four Description
The fourth simulation is established in order to provide insight for either false-negative detec-
tions or false-positive detections, which have a higher impact on mean-estimate errors. In this
scenario, there exists fifteen agents and fifteen targets, and the simulation runs for 100 turns.
This simulation has the same setup as Section 4.4 except false-detections ratios.

In this scenario, the linear model of agents, described in Section 2.2.2, is applied and the ini-
tialization of the agents is randomized as in Section 4.3. The false positive ratio is set to 5%
and the false negative ratio is set to 10%. The false detections are generated as explained in
Section 3.2.2.

The simulation border are set to 100 for the x, y and z dimensions. It is expected that the agents
will bounce back from the borders.

4.5.2 Scenario Four Results
Individual Agent Tracking Performance
After the simulation executes for 100 turns as done previously, the following results are ac-
quired.

The Figure 4.19 throughout Figure 4.21 represents the same information provided in Sec-
tion 4.3. It should be kept in mind that these figures depict only one agent and one target.
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When these figures are investigated, it can be inferred that the mean estimate error for x, y and z

dimensions are 5.61, 9.71 and 11.77 meters respectively. These mean estimate errors are lower
than the results in Figure 4.13 throughout Figure 4.15.

(a) (b)

Figure 4.19: x dimension views of Target 1 and Agent 1’s closest track in Scenario Four. (a)
The x dimension plots for both Target 1 and Agent 1’s closest track (b) The x dimension error
of Agent 1’s track and Target 1

(a) (b)

Figure 4.20: y dimension views of Target 1 and Agent 1’s closest track in Scenario Four. (a)
The y dimension plots for both Target 1 and Agent 1’s closest track (b) The y dimension error
of Agent 1’s track and Target 1

It is expected that due to the KF, the the mean estimate error will decrease in each concurrent
time step. As in Section 4.4, this behavior is not observed for this section. The mean errors
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do not decrease with each concurrent time steps; instead it oscillate within a specific value for
each dimension. We observed that, in both Section 4.4 and Section 4.5, false detections have a
negative impact on KF process of target tracking. False positive detections have slightly higher
impacts on KF estimations than false negative detections.

(a) (b)

Figure 4.21: z dimension views of Target 1 and Agent 1’s closest track in Scenario Four. (a)
The z dimension plots for both Target 1 and Agent 1’s closest track (b) The z dimension error
of Agent 1’s track and Target 1

Aggregate Team Tracking Performance
From Figure 4.24, it can be inferred that the the mean-aggregate estimate error for each dimen-
sion oscillates around a specific value, which is similar to that in Section 4.3 and Section 4.4.
This simulation also has a similar number of outliers compared with two simulations in Fig-
ure 4.24. It can be concluded that false detections do not greatly alter the distribution of the
mean-estimate errors. Agents can handle different ratios of false detections without too much
trouble, as in Section 4.4.

The dimensions x, y, z, Vx, Vy and Vz have 11.25, 8.65, 8.40, 5.63, 5.64 and 5.83 meters of
the mean estimate error, respectively. These parameters are slightly lower than in Figure 4.18,
which means false-negative detections have less impact than false-positive detections.

According to Figure 4.22, on average, it can be seen that there exists more newly initialized
tracks, 2.40, than tracks associated with history, 1.13, similar to Section 4.4. Also, in this
simulation, on average, the number of targets tracked is 3.53. These parameters show that false-
negative detections hamper the performance of track generation methods. The Section 4.4, on
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average, has a higher number of targets tracking.

Figure 4.22: The mean number associated tracks at time t vs. tracks at time t−1 for all agents
in Scenario Four. If tracks have no association, they are accepted as new tracks without prior
knowledge

The track of one agent and one target can be seen in Figure 4.23. This figure depicts the trace of
two agents throughout the simulation, which are very similar to the plot shown in Figure 4.16.

Simulation 4 shows that, when compared against false positive detections, false negative detec-
tions greatly reduces the performance of the JPDA method, but the mean of errors is lower than
in Section 4.4. Also, in terms of average number of targets tracked, Section 4.5 has the lowest
ration amongst Section 4.3 to Section 4.5
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Figure 4.23: The plot of 1 Target (red/diamond) and 1 Agent (blue/circle) throughout Scenario
Four. In each five time steps, all tracks of all Agents are plotted (green/hexagram). The markers
in this figures are time stamps of agents and tracks. This figure exemplifies the trace of agents
with tracks
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Figure 4.24: This figure, in Scenario Four, depicts the mean error of all agents for each dimen-
sion in terms of the difference of each track and its associated target.
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CHAPTER 5:
Conclusion and Future Work

5.1 Conclusion
The main objective of this thesis is to present a novel method for generating global common
operational picture for swarm-versus-swarm, unmanned aerial systems by applying well-known
methods while providing an autonomous approach that works individually for each agent with-
out a centralized communication node requirement and analyzing their performance for the
distributed multi-target tracking (MTT) problem from multiple mobile platforms. The MTT
framework integrates a sequence of algorithms to collectively provide this picture. Given vari-
ous approaches, each has tits drawbacks in different contexts. This thesis presents one approach
that has relevance to the intended mission, with realistic considerations and emphasis on tech-
nical rigor.

In the presented framework, each agent acquires its detections (e.g., from simulated onboard
sensors) and generates tracks via a K-means clustering method, providing estimates of the tar-
gets’ states in the environments. Data association between existing tracks is performed using
the augmented suboptimal joint-probability data-association algorithm, in conjunction with the
extended Munkres algorithm. Subsequently, tracks are refined or newly instantiated with appli-
cation of a Kalman filter to compute the state error estimates and their covariances.

The simulation software generates two types of agents, namely those that are the trackers (called
Allied Agents) and those to be tracked (called Enemy Agents). A sensor model incorporating
noisy detections as well as occlusions is presented, as well as a dynamics model of agent motion
that is also subject to noise. Given these elements, each agent works with its networked team-
mates to construct the common operational picture. The simulation records and summarizes
relevant data to provide statistical results on the performance of the framework.

The main measure of performance of the team of sensing agents is the targets’ state estimation
errors, that is, the difference between the perceived state represented by a set of tracks and the
true state of targets (provided by simulation). Four different scenarios are constructed for nu-
merical studies, which investigate different factors which may impact the tracking performance
and are relevant to real-world applications:
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• Scenario One provides a baseline case to examine the performance of the proposed MTT
approach for three agents tracking three targets in the absence of uncertainty, in detections
and motion in a relatively unconfined environment.
• Scenario Two examines a larger engagement between fifteen agents vs. fifteen targets,

including a noisy model for the constant velocity motion dynamics, as well as imperfect
detections representing true targets perturbed by Gaussian noise.
• Scenario Three extends the previous investigation with the inclusion of false positive and

false negative detections, with error rates of 10% and 5%, respectively.
• Scenario Four further studies the sensitivity of the false detection error rates, now con-

sidering reversed biases with a false positive detection rate of 5% and a false negative
detection rate of 10%, still considering the fifteen vs. fifteen setting.

Scenario Average State Estimate Errors
# x y z Vx Vy Vz

Scenario One 7.21 0.81 1.59 2.80 0.26 1.30
Scenario Two 10.03 7.99 7.17 5.06 5.63 5.41

Scenario Three 12.20 9.94 9.22 5.49 6.12 5.88
Scenario Four 11.25 8.65 8.40 5.63 5.64 5.83

Table 5.1: Summary of the average state-estimate errors for each of six state variables (positions
and linear speeds) from simulation studies for four different scenarios, described in Section 4.

The aggregate tracking performance of each scenario is summarized in Table 5.1. Insights from
these simulation studies include the need for a good detection-clustering algorithm, which is
the leading step in generating target tracks.

In this paper, the first simulation is designed to generate results such that targets are in the FOV
of at least one agent for any discrete time. When the simulation one is analyzed, in which agents
keep track of targets all the time, the mean error of agents is lowest. It is clear that preserving the

Scenario Average number of Tracks
# # Targets # Newly Initialized Historical

Scenario One 3 3.30 0.37 2.93
Scenario Two 15 4.29 2.32 1.97

Scenario Three 15 4.40 2.78 1.62
Scenario Four 15 3.53 2.40 1.13

Table 5.2: Summary of average number of track computation for each scenario. It should be
noted that number of targets is fixed throughout the simulation.
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targets in the FOV provides the best track estimations, which is only guaranteed in Section 4.2.

The studies highlight that false detections negatively impact the tracking performance of the
multi-sensor network, though false positive detections appear to result in greater tracking error
than their false negative detection counterparts. Additionally, the sensitivity of the track data-
association algorithm, balancing the use of existing historical tracks versus the instantiation
of new tracks, plays a significant role in the average error, since the Kalman filter provides
advantages only after it converges after continuous tracking is maintained. Rather than the
false detections, the uncertainties due to dynamics noise (e.g., the random movements of the
targets) is a greater challenge in data association than false detections, because targets exiting
and entering the collective sensor field of view drop or create tracks, degrading the aggregate
tracking performance. These insights can be used to improve not only existing capabilities for
MTT, but to develop future requirements on such multi-target tracking systems, specifically
leveraging a network of mobile agents such as a swarm of unmanned aerial systems.

The number of targets tracked by each agent plays an important factor in determining the ac-
curacy of track generation in each time step. It is observed that in both the absence of false
detections (Section 4.3) and high ratio of false-positive detections ( Section 4.4), the mean num-
ber of targets is very close: 4.29 and 4.40 respectively. However, when a high ratio of false-
negative detections is introduced to the simulation (Section 4.5), the ratio drops 3.53. In terms
of number of targets tracked, it is quite amazing that agents handle false-positives detections
with great accuracy, while suffering from the false-negative detections.

It is observed that the presence of false detections affects the performance of the Kalman filter.
When all detections are true detections, the KF generates very accurate estimations only with
four consecutive time steps of target tracking. In each time step, the KF reduces the mean of er-
ror greatly, up to a certain value, for each dimension just in four consecutive times of detection,
as seen in Section 4.2 and Section 4.3. But when false detections are introduced, Section 4.4
and Section 4.5, KF cannot estimate the targets with great accuracy, even if continuous tracking
is established. Instead of decreasing the mean of error in each consequent step, the KF provides
an oscillating mean of errors for each dimension.

In all four simulations, target estimations are generated by the KF. It is observed that, for any
scenario, when a target is initialized, the KF generates the highest mean of error. It is clear that
losing track of a target hampers the performance of agents.
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The method for selecting the best k has an crucial impact on generating an accurate number of
targets. In this paper, a modified L-method is used for best k selection for number of detections
less than 20. It turns out that the modified L-method provides quite accurate results, as seen in
Section 4.2, the mean number of targets.

5.2 Future Work
In this scenario where perfect networking for sharing available detections among the entire
team is allowed, it is suspected that, without a special area-coverage algorithm implemented
among the agents, keeping track of all targets is not achievable with the current framework,
since no explicit control is imparted on the agents to ensure coverage. This issue causes higher
errors in both individual and aggregate tracking, since the target cannot be guaranteed to re-
main in the collective field-of-view continuously over the course of the scenario. There are
several areas that can be extended in future studies to better address the requirements of per-
forming multi-target tracking where the sensors are mobile themselves. First, refinement of the
detection clustering algorithm according to the anticipated or nominal number of detections in
practice would likely provide substantial improvement to the tracking performance. In particu-
lar, the K-means approach using the L-method to determine the number of clusters provided a
computationally cheap and attractive approach, especially knowing that the ultimate goal is to
track agents in a swarm of UAVs; however, for scenarios where fewer detections are available
(e.g., when there are fewer targets or fewer sensors), this method appears to be less effective.
Nonetheless, additional methods beyond those investigated in this thesis may highlight better
performing implementations.

Another significant component of the MTT process is the task of associating tracks over time,
such as the Augmented Suboptimal Joint Probability Data Association algorithm implemented
in this work. Given the dependence on only the previous track (rather than an extended history),
the ASJPDA algorithm suffers when a track is lost, that is, new tracks are necessarily initialized
in the next time step, which increases the average error due to the initial conditions of the imple-
mented Kalman filter. Instead, future work could investigate the advantages of using additional
past information at the expense of computational complexity to mitigate such shortcomings.

Additionally, the λ and PD parameters of the ASJPDA have been observed to play an important
role on the β and β0 terms, which directly influence how well tracks are associated with previous
ones. For the presented work, these naïvely chosen parameters are held constant throughout the
duration of the simulation, as well as across the scenarios studied in this thesis. In future work,
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perhaps depending on the specific scenarios of interest, the λ and PD parameters can be analyzed
and appropriately selected to provide better ASJPDA results for track associations.

Further, the information from previous tracks can be used to help prune the detections that in-
fluence the clustering algorithm and thus the association algorithm. For example, one could
identify detections that are more than some threshold away and no longer included in the cal-
culation of the specific track’s estimate mean and covariance, thereby improving the tracking
performance. The detections discarded in this manner could remain unassigned, could trigger
the creation of a new track, or could possibly be assigned to other tracks.

A future enhancement to the simulation software would be for each agent to also possess knowl-
edge of the true target labels or ID for all detections (which is only known to the simulation) and
for associated tracks. As the primary focus of the thesis was on collective tracking performance,
rather than on individual unique target identification and tracking of specific targets, the simula-
tion did not rely on a labeling system for targets that could be stored for further analysis. Future
versions of this software could incorporate such data to aid in conducting additional simulation
analysis studies.

Also, the simulation software does not possess the knowledge of targets that are in the cumu-
lative FOV of the agents (which is only known to the simulation) including labels for which
agents has the visibility of each target. In Section 4, it is observed that targets enter or exit the
cumulative FOV of the all agents. The lack of this information, instead of using the number
of targets introduced for given setup, prevents the analyze of exact number of targets in the
cumulative FOV of the all agents.

The scenarios introduced in Section 4 can be further diversify; unlimited FOV for agents, in-
creased noise parameters, and increased ratio of false detections. Additional scenarios provide
better insight on the model and ground its strengths and weaknesses (e. g., the threshold value
of noise for the model, the performance of track generation in unlimited FOV).

Finally, a significant assumption posed by this thesis is the absence of communication and
networking constraints. However, in physical implementations of such large swarm-based mo-
bile sensor networks, issues such as communication noise and latencies pose an operationally
relevant challenge. A number of potential avenues for future work include investigation of a
hierarchical network, with node aggregation and approximation according to bandwidth, such
as presented in [38]. For example, in [38], the authors observe that redundant data can be
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ignored with aggregation techniques. Sensor information can also be clustered by assigning
group leaders according to a pre-defined network organization or prioritization. Another can-
didate solution is a scalable sensing network for maintaining multi-target identity information,
as examined by [39], where an identity mass-flow framework is used in order to decrease the
computational workload of the system. Such methods for addressing scalability, robustness,
throughput, and other network considerations offer significant potential for contribution.
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